Although left ventricular (LV) coronary sinus lead dislodgement remains a problem, the risk factors for dislodgement have not been clearly defined. In order to identify potential risk factors for acute lead dislodgement, we conducted dynamic finite element simulations of pacemaker lead dislodgement in marginal LV vein. We considered factors such as mismatch in lead and vein diameters, velocity of myocardial motion, branch angle between the insertion vein and the coronary sinus, degree of slack, and depth of insertion. The results show that large lead-to-vein diameter mismatch, rapid myocardial motion, and superficial insertion are potential risk factors for lead dislodgement. In addition, the degree of slack presents either a positive or negative effect on dislodgement risk depending on the branch angle. The prevention of acute lead dislodgment can be enforced by inducing as much static friction force as possible at the lead-vein interface, while reducing the external force. If the latter exceeds the former, dislodgement will occur. The present findings underscore the major risk factors for lead dislodgment, which may improve implantation criterion and future lead design.

1.
Lau
,
E. W.
, 2009, “
Achieving Permanent Left Ventricular Pacing-Options and Choice
,”
Pacing Clin. Electrophysiol.
0147-8389,
32
(
11
), pp.
1466
1477
.
2.
Lin
,
G.
,
Anavekar
,
N. S.
,
Webster
,
T. L.
,
Rea
,
R. F.
,
Hayes
,
D. L.
, and
Brady
,
P. A.
, 2009, “
Long-Term Stability of Endocardial Left Ventricular Pacing Leads Placed via the Coronary Sinus
,”
Pacing Clin. Electrophysiol.
0147-8389,
32
(
9
), pp.
1117
1122
.
3.
Bulava
,
A.
, and
Lukl
,
J.
, 2007, “
Single-Centre Experience With Coronary Sinus Lead Stability and Long-Term Pacing Parameters
,”
Europace
1099-5129,
9
(
7
), pp.
523
527
.
4.
Baxter
,
W. W.
, and
McCulloch
,
A. D.
, 2001, “
In Vivo Finite Element Model-Based Image Analysis of Pacemaker Lead Mechanics
,”
Med. Image Anal.
1361-8415,
5
(
4
), pp.
255
270
.
5.
Anderson
,
S. E.
,
Hill
,
A. J.
, and
Iaizzo
,
P. A.
, 2009, “
Microanatomy of Human Left Ventricular Coronary Veins
,”
The Anatomical Record
,
292
(
1
), pp.
23
28
.
6.
Pretorius
,
P. H.
,
Pan
,
T. S.
,
Narayanan
,
M. V
, and
King
,
M. A.
, 2002, “
A Study of the Influence of Local Variations in Myocardial Thickness on SPECT Perfusion Imaging
,”
IEEE Transactions on Nuclear Science
, Vol.
49
, pp.
2304
2308
.
7.
Chan
,
J. Y. S.
,
Fung
,
J. W. H.
, and
Yu
,
C.
, 2006, “
Early Left Ventricular Lead Dislodgement Related to Hyperpnea Respiration
,”
Pacing Clin. Electrophysiol.
0147-8389,
29
(
4
), pp.
425
426
.
8.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
1
), pp.
42
55
.
9.
Wenk
,
J. F.
,
Wall
,
S. T.
,
Peterson
,
R. C.
,
Helgerson
,
S. L.
,
Sabbah
,
H. N.
,
Burger
,
M.
,
Stander
,
N.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
, 2009, “
A Method for Automatically Optimizing Medical Devices for Treating Heart Failure: Designing Polymeric Injection Patterns
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
12
), p.
121011
.
10.
Liu
,
Y.
,
Zhang
,
W.
, and
Kassab
,
G. S.
, 2008, “
Effects of Myocardial Constraint on the Passive Mechanical Behaviors of the Coronary Vessel Wall
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
(
1
), pp.
H514
H523
.
You do not currently have access to this content.