Stress relaxation tests using a custom designed microindentation device were performed on ten anatomic regions of fresh porcine brain (postmortem time <3 h). Using linear viscoelastic theory, a Prony series representation was used to describe the shear relaxation modulus for each anatomic region tested. Prony series parameters fit to load data from indentations performed to ∼10% strain differed significantly by anatomic region. The gray and white matter of the cerebellum along with corpus callosum and brainstem were the softest regions measured. The cortex and hippocampal CA1/CA3 were found to be the stiffest. To examine the large strain behavior of the tissue, multistep indentations were performed in the corona radiata to strains of 10%, 20%, and 30%. Reduced relaxation functions were not significantly different for each step, suggesting that quasi-linear viscoelastic theory may be appropriate for representing the nonlinear behavior of this anatomic region of porcine brain tissue. These data, for the first time, describe the dynamic and short time scale behavior of multiple anatomic regions of the porcine brain which will be useful for understanding porcine brain injury biomechanics at a finer spatial resolution than previously possible.

References

1.
Hyder
,
A. A.
,
Wunderlich
,
C. A.
,
Puvanachandra
,
P.
,
Gururaj
,
G.
, and
Kobusingye
,
O. C.
, 2007, “
The Impact of Traumatic Brain Injuries: A Global Perspective
,”
NeuroRehabilitation
,
22
, pp.
341
353
.
2.
Menon
,
D. K.
, 2009, “
Unique Challenges in Clinical Trials in Traumatic Brain Injury
,”
Crit. Care Med.
,
37
, pp.
S129
S135
.
3.
Kleiven
,
S.
, and
Hardy
,
W. N.
, 2002, “
Correlation of an FE Model of the Human Head With Local Brain Motion—Consequences for Injury Prediction
,”
Stapp Car Crash J.
,
46
, pp.
123
144
.
4.
Kleiven
,
S.
, 2007, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash J.
,
51
, pp.
81
114
.
5.
Yoganandan
,
N.
,
Li
,
J.
,
Zhang
,
J.
,
Pintar
,
F. A.
, and
Gennarelli
,
T.A.
, 2008, “
Influence of Angular Acceleration-Deceleration Pulse Shapes on Regional Brain Strains
,”
J. Biomech.
,
41
, pp.
2253
2262
.
6.
Takhounts
,
E. G.
,
Crandall
,
J. R.
, and
Darvish
,
K.
, 2003, “
On the Importance of Nonlinearity of Brain Tissue Under Large Deformations
,”
Stapp Car Crash J.
,
47
, pp.
79
92
.
7.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
, 2008, “
Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
Stapp Car Crash J.
,
52
, pp.
1
31
.
8.
Ommaya
A. K.
, 1968, “
Mechanical Properties of Tissues of the Nervous System
,”
J. Biomech.
,
1
, pp.
127
138
.
9.
Fallenstein
,
G. T.
,
Hulce
,
V. D.
, and
Melvin
,
J. W.
, 1969, “
Dynamic Mechanical Properties of Human Brain Tissue
,”
J. Biomech.
,
2
, pp.
217
226
.
10.
Shuck
,
L. Z.
, and
Advani
,
S. H.
, 1972, “
Rheological Response of Human Brain-Tissue in Shear
,”
J. Basic Eng.
,
94
, pp.
905
911
.
11.
Pamidi
,
M. R.
, and
Advani
,
S. H.
, 1978, “
Non-linear Constitutive Relations for Human-Brain Tissue
,”
ASME J. Biomech. Eng.
,
100
, pp.
44
48
.
12.
Donnelly
,
B. R.
, and
Medige
,
J.
, 1997, “
Shear Properties of Human Brain Tissue
,”
ASME J. Biomech. Eng.
,
119
, pp.
423
432
.
13.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
,
124
, pp.
244
252
.
14.
Nicolle
,
S.
,
Lounis
,
M.
,
Willinger
,
R.
, and
Palierne
,
J. F.
, 2005, “
Shear Linear Behavior of Brain Tissue Over a Large Frequency Range
,”
Biorheology
,
42
, pp.
209
223
.
15.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
, 2008, “
Rheological Properties of the Tissues of the Central Nervous System: A Review
,”
Med. Eng. Phys.
,
30
, pp.
1318
1337
.
16.
Hrapko
,
M.
,
van Dommelen
,
J. A.
,
Peters
,
G. W.
, and
Wismans
,
J. S.
, 2008, “
The Influence of Test Conditions on Characterization of the Mechanical Properties of Brain Tissue
,”
ASME J. Biomech. Eng.
,
130
, p.
031003
.
17.
van Dommelen
,
J. A.
,
van der Sande
,
T. P.
,
Hrapko
,
M.
, and
Peters
,
G. W.
, 2010, “
Mechanical Properties of Brain Tissue by Indentation: Interregional Variation
,”
J. Mech. Behav. Biomed. Mater.
,
3
, pp.
158
166
.
18.
Meaney
,
D. F.
,
Smith
,
D. H.
,
Shreiber
,
D. I.
,
Bain
,
A. C.
,
Miller
,
R. T.
,
Ross
,
D. T.
, and
Gennarelli
,
T. A.
, 1995, “
Biomechanical Analysis of Experimental Diffuse Axonal Injury
,”
J. Neurotrauma
,
12
, pp.
689
694
.
19.
Sparrey
,
C. J.
,
Manley
,
G. T.
, and
Keaveny
,
T. M.
, 2009, “
Effects of White, Grey, and Pia Mater Properties on Tissue Level Stresses and Strains in the Compressed Spinal Cord
,”
J. Neurotrauma
,
26
, pp.
585
595
.
20.
Cheng
,
L.
,
Xia
,
X.
,
Yu
,
W.
,
Scriven
,
L. E.
, and
Gerberich
,
W. W.
, 2000, “
Flat-Punch Indentation of Viscoelastic Material
,”
J. Polym. Sci., Part B: Polym. Phys.
,
38
, pp.
10
22
.
21.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
On the Effects of Residual Stress in Microindentation Tests of Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
126
, pp.
276
283
.
22.
Lu
,
X. L.
,
Mow
,
V. C.
, and
Guo
,
X. E.
, 2009, “
Proteglycans and Mechanical Behavior of Condylar Cartilage
,”
J. Dent. Res.
,
88
, pp.
244
248
.
23.
Radok
,
J. R. M.
, and
Lee
,
E. H.
, 1960, “
The Contact Problem for Viscoelastic Bodies
,”
J. Appl. Mech.
,
27
, pp.
438
444
.
24.
Sakai
,
M.
, 2002, “
Time-Dependent Viscoelastic Relation Between Load and Penetration for an Axisymmetric Indenter
,”
Philos. Mag. A
,
82
, pp.
1841
1849
.
25.
Darvish
,
K. K.
, and
Crandall
,
J. R.
, 2001, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
,
23
, pp.
633
645
.
26.
Lippert
,
S. A.
,
Rang
,
E. M.
, and
Grimm
,
M. J.
, 2004, “
The High Frequency Properties of Brain Tissue
,”
Biorheology
,
41
, pp.
681
691
.
27.
Elkin
,
B. S.
,
Ilankovan
,
A.
, and
Morrison
,
B.
, 2010, “
Age-Dependent Regional Mechanical Properties of the Rat Hippocampus and Cortex
,”
ASME J. Biomech. Eng.
,
121
, p.
011010
.
28.
Harding
,
J. W.
, and
Sneddon
,
I. N.
, 1945, “
The Elastic Stresses Produced by the Indentation of the Plane Surface of a Semi-Infinite Elastic Solid by a Rigid Punch
,”
Proc. Cambridge Philos. Soc.
,
41
, pp.
16
26
.
29.
Findley
,
W. N.
,
Lai
,
J. S.
, and
Onaran
,
K.
, 1989,
Creep and Relaxation of Nonlinear Viscoelastic Materials
,
Dover
,
New York
.
30.
Allen
,
M. P.
,
1997
, “
Testing Hypotheses in Nested Regression Models
,” in
Understanding Regression Analysis
,
Plenum
,
New York
, pp.
113
115
.
31.
Bonferroni
,
C. E.
, 1935, “
Il Calcolo Delle Assicurazioni su Gruppi di Teste
,” in
Studi in Onore del Professore Salvatore Ortu Carboni
,
Tipografia del Senato
,
Rome
, pp.
13
60
.
32.
Massey
,
F. J.
, 1951, “
The Kolmogorov-Smirnov Test for Goodness of Fit
,”
J. Am. Stat. Assoc.
,
46
, pp.
68
78
.
33.
Kalidindi
,
S. R.
, and
Pathak
S.
, 2008, “
Determination of the Effective Zero-Point and the Extraction of Spherical Nanoindentation Stress-Strain Curves
,”
Acta Mater.
,
56
, pp.
3523
3532
.
34.
Elkin
,
B. S.
,
Ilankovan
,
A.
, and
Morrison
,
B.
, 2011, “
A Detailed Viscoelastic Characterization of the Rat Brain
,”
J. Neurotrauma
,
28
.
35.
Coats
,
B.
, and
Margulies
,
S. S.
, 2006, “
Material Properties of Porcine Parietal Cortex
,”
J. Biomech.
,
39
, pp.
2521
2525
.
36.
Gefen
,
A.
, and
Margulies
,
S. S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
,
37
, pp.
1339
1352
.
37.
Arbogast
,
K. B.
, and
Margulies
,
S. S.
, 1998, “
Material Characterization of the Brainstem From Oscillatory Shear Tests
,”
J. Biomech.
,
31
, pp.
801
807
.
38.
Christ
,
A. F.
,
Franze
,
K.
,
Gautier
,
H.
,
Moshayedi
,
P.
,
Fawcett
,
J.
,
Franklin
,
R. J.
,
Karadottir
,
R. T.
, and
Guck
,
J.
, 2010, “
Mechanical Difference Between White and Gray Matter in the Rat Cerebellum Measured by Scanning Force Microscopy
,”
J. Biomech.
,
43
, pp.
2986
2992
.
39.
Mendis
,
K. K.
,
Stalnaker
,
R. L.
, and
Advani
,
S. H.
, 1995, “
A Constitutive Relationship for Large-Deformation Finite-Element Modeling of Brain-Tissue
,”
ASME J. Biomech. Eng.
,
117
, pp.
279
285
.
40.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modelling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
,
30
, pp.
1115
1121
.
41.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
N.
, 2001, “
Large Strain Behaviour of Brain Tissue in Shear: Some Experimental Data and Differential Constitutive Model
,”
Biorheology
,
38
, pp.
335
345
.
42.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
,
New York
.
43.
Thibault
,
K. L.
, and
Margulies
,
S. S.
, 1998, “
Age-Dependent Material Properties of the Porcine Cerebrum: Effect on Pediatric Inertial Head Injury Criteria
,”
J. Biomech.
,
31
, pp.
1119
1126
.
44.
Garo
,
A.
,
Hrapko
,
M.
,
van Dommelen
,
J. A.
, and
Peters
,
G. W.
, 2007, “
Towards a Reliable Characterisation of the Mechanical Behaviour of Brain Tissue: The Effects of Post-mortem Time and Sample Preparation
,”
Biorheology
,
44
, pp.
51
58
.
45.
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Guan
,
Y.
,
Shender
,
B.
,
Paskoff
,
G.
, and
Laud
,
P.
, 2010, “
Effects of Tissue Preservation Temperature on High Strain-Rate Material Properties of Brain
,”
J. Biomech.
,
44
, pp.
391
396
.
46.
Ting
,
T. C. T.
, 1966, “
Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space
,”
J. Appl. Mech.
,
33
, pp.
845
854
.
47.
Johnson
,
K. L.
, 1970, “
Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
,
18
, pp.
115
126
.
You do not currently have access to this content.