In the presence of a tumor defect, completed humeral shaft fractures continue to be a major surgical challenge since there is no “gold standard” treatment. This is due, in part, to the fact that only one prior biomechanical study exists on the matter, but which only compared 2 repair methods. The current authors measured the humeral torsional performance of 5 fixation constructs for completed pathological fractures. In 40 artificial humeri, a 2-cm hemi-cylindrical cortical defect with a transverse fracture was created in the lateral cortex. Specimens were divided into 5 different constructs and tested in torsion. Construct A was a broad 10-hole 4.5-mm dynamic compression plate (DCP). Construct B was the same as A except that the screw holes and the tumor defect were filled with bone cement and the screws were inserted into soft cement. Construct C was the same as A except that the canal and tumor defect were filled with bone cement and the screws were inserted into dry cement. Construct D was a locked intramedullary nail inserted in the antegrade direction. Construct E was the same as D except that bone cement filled the defect. For torsional stiffness, construct C (4.45 ± 0.20 Nm/deg) was not different than B or E (p > 0.16), but was higher than A and D (p < 0.001). For failure torque, construct C achieved a higher failure torque (69.65 ± 5.35 Nm) than other groups (p < 0.001). For the failure angle, there were no differences between plating constructs A to C (p ≥ 0.11), except for B versus C (p < 0.05), or between nailing groups D versus E (p = 0.97), however, all plating groups had smaller failure angles than both nailing groups (p < 0.05). For failure energy, construct C (17.97 ± 3.59 J) had a higher value than other groups (p < 0.005), except for A (p = 0.057). Torsional failure always occurred in the bone in the classic “spiral” pattern. Construct C provided the highest torsional stability for a completed pathological humeral shaft fracture.

References

1.
Campanacci
,
M.
, 1999,
Bone and Soft Tissue Tumors
,
Springer-Verlag
,
Vienna, New York
.
2.
Frassica
,
F. J.
, and
Frassica
,
D. A.
, 2003, “
Metastatic Bone Disease of the Humerus
,”
J. Am. Acad. Orthop. Surg.
,
11
, pp.
282
288
.
3.
Miller
,
F.
, and
Whitehill
,
R.
, 1984, “
Carcinoma of the Breast Metastatic to the Skeleton
,”
Clin. Orthop. Relat. Res.
,
184
, pp.
121
127
.
4.
Schurmann
,
M.
,
Gradl
,
G.
,
Andress
,
H. J.
,
Kauschke
,
T.
,
Hertlein
,
H.
, and
Lob
,
G.
, 2000, “
Metastatic Lesions of the Humerus Treated With the Isoelastic Diaphysis Prosthesis
,”
Clin. Orthop. Relat. Res.
,
380
, pp.
204
214
.
5.
Hertel
,
R.
, 2005, “
Fractures of the Proximal Humerus in Osteoporotic Bone
,”
Osteoporosis Int.
,
16
(
2
), pp.
S65
72
.
6.
Siffri
,
P. C.
,
Peindl
,
R. D.
,
Coley
,
E. R.
,
Norton
,
J.
,
Connor
,
P. M.
, and
Kellam
,
J. F.
, 2006, “
Biomechanical Analysis of Blade Plate Versus Locking Plate Fixation for a Proximal Humerus Fracture: Comparison Using Cadaveric and Synthetic Humeri
,”
J. Orthop. Trauma
,
20
, pp.
547
554
.
7.
Chin
,
H. C.
,
Frassica
,
F. J.
,
Hein
,
T. J.
,
Shives
,
T. C.
,
Pritchard
,
D. J.
,
Sim
,
F. H.
, and
Chao
,
E. Y.
, 1989, “
Metastatic Diaphyseal Fractures of the Shaft of the Humerus. The Structural Strength Evaluation of a New Method of Treatment With a Segmental Defect Prosthesis
,”
Clin. Orthop. Relat. Res.
,
248
, pp.
231
239
.
8.
Dalton
,
J. E.
,
Salkeld
,
S. L.
,
Satterwhite
,
Y. E.
, and
Cook
,
S. D.
, 1993, “
A Biomechanical Comparison of Intramedullary Nailing Systems for the Humerus
,”
J. Orthop. Trauma
,
7
, pp.
367
374
.
9.
Damron
,
T. A.
,
Rock
,
M. G.
,
Choudhury
,
S. N.
,
Grabowski
,
J. J.
, and
An
,
K. N.
, 1999, “
Biomechanical Analysis of Prophylactic Fixation for Middle Third Humeral Impending Pathologic Fractures
,”
Clin. Orthop. Relat. Res.
,
363
, pp.
240
248
.
10.
Fuchtmeier
,
B.
,
May
,
R.
,
Fierlbeck
,
J.
,
Hammer
,
J.
, and
Nerlich
,
M.
, 2006, “
A Comparative Biomechanical Analysis of Implants for the Stabilization of Proximal Humerus Fractures
,”
Technol. Health Care
,
14
, pp.
261
270
.
11.
Hessmann
,
M. H.
,
Sternstein
,
W.
,
Krummenauer
,
F.
,
Hofmann
,
A.
, and
Rommens
,
P. M.
, 2005, “
Internal Fixation of Proximal Humerus Fractures
,”
Chirurg
,
76
, pp.
167
174
.
12.
Murdoch
,
A. H.
,
Shepherd
,
D. E.
,
Mathias
,
K. J.
, and
Stevenson
,
E. C.
, 2003, “
Design of a Retractable Intramedullary Nail for the Humerus
,”
Biomed. Mater. Eng.
,
13
, pp.
297
307
.
13.
Sarmiento
,
A.
,
Waddell
,
J. P.
, and
Latta
,
L. L.
, 2002, “
Diaphyseal Humeral Fractures: Treatment Options
,”
Instr. Course Lect.
,
51
, pp.
257
269
.
14.
McCormack
,
R. G.
,
Brien
,
D.
,
Buckley
,
R. E.
,
McKee
,
M. D.
,
Powell
,
J.
, and
Schemitsch
,
E. H.
, 2000, “
Fixation of Fractures of the Shaft of the Humerus by Dynamic Compression Plate or Intramedullary Nail: A Prospective, Randomised Trial
,”
J. Bone Joint Surg. Br.
,
82
, pp.
336
339
.
15.
Modabber
,
M. R.
, and
Jupiter
,
J. B.
, 1998, “
Operative Management of Diaphyseal Fractures of the Humerus: Plate Versus Nail
,”
Clin. Orthop. Relat. Res.
,
347
, pp.
93
104
.
16.
Weiss
,
K. R.
,
Bhumbra
,
R.
,
Biau
,
D. J.
,
Griffin
,
A. M.
,
Deheshi
,
B.
,
Wunder
,
J. S.
, and
Ferguson
,
P. C.
, 2011, “
Fixation of Pathological Humeral Fractures by the Cemented Plate Technique
,”
J. Bone Joint Surg. Br.
,
93
(
8
), pp.
1093
1097
.
17.
Bickels
,
J.
,
Kollender
,
Y.
,
Wittig
,
J. C.
,
Meller
,
I.
, and
Malawer
,
M. M.
, 2005, “
Function After Resection of Humeral Metastases: Analysis of 59 Consecutive Patients
,”
Clin. Orthop. Relat. Res.
,
437
, pp.
201
208
.
18.
Vandeweyer
,
E.
, and
Gebhart
,
M.
, 1997, “
Treatment of Humeral Pathological Fractures by Internal Fixation and Methylmetacrylate Injection
,”
Eur. J. Surg. Oncol.
,
23
, pp.
238
242
.
19.
Dijkstra
,
S.
,
Stapert
,
J.
,
Boxma
,
H.
, and
Wiggers
,
T.
, 1996, “
Treatment of Pathological Fractures of the Humeral Shaft Due to Bone Metastases: A Comparison of Intramedullary Locking Nail and Plate Osteosynthesis With Adjunctive Bone Cement
,”
Eur. J. Surg. Oncol.
,
22
, pp.
621
626
.
20.
Sabick
,
M. B.
,
Torry
,
M. R.
,
Kim
,
Y.-K.
, and
Hawkins
,
R. J.
, 2004, “
Humeral Torque in Professional Baseball Pitchers
,”
Am. J. Sports Med.
,
32
(
4
), pp.
892
898
.
21.
Feltner
,
M. E.
, and
Dapena
,
J.
, 1986, “
Dynamics of the Shoulder and Elbow Joints of the Throwing Arm During a Baseball Pitch
,”
Int. J. Sport Biomech.
,
2
, pp.
235
259
.
22.
Fleisig
,
G. S.
,
Andrews
,
J. R.
,
Dillman
,
C. J.
, and
Escamilla
,
R. F.
, 1995, “
Kinetics of Baseball Pitching With Implications About Injury Mechanisms
,”
Am. J. Sports Med.
23
(
2
), pp.
233
239
.
23.
Fleisig
,
G. S.
,
Barrentine
,
S. W.
,
Zheng
,
N.
,
Escamilla
,
R. F.
, and
Andrews
,
J. R.
, 1999, “
Kinematic and Kinetic Comparison of Baseball Pitching Among Various Levels of Development
,”
J. Biomech.
,
32
(
12
), pp.
1371
1375
.
24.
Schopfer
,
A.
,
Hearn
,
T. C.
,
Malisano
,
L.
,
Powell
,
J. N.
, and
Kellam
,
J. F.
, 1994, “
Comparison of Torsional Strength of Humeral Intramedullary Nailing: A Cadaveric Study
,”
J. Orthop. Trauma
,
8
(
5
), pp.
414
421
.
25.
Lin
,
J.
,
Inoue
,
N.
,
Valdevit
,
A.
,
Hang
,
Y. S.
,
Hou
,
S. M.
, and
Chao
,
E. Y. S.
, 1998, “
Biomechanical Comparison of Antegrade and Retrograde Nailing of Humeral Shaft Fracture
,”
Clin. Orthop. Rel. Res.
,
351
, pp.
203
213
.
26.
Dunlap
,
J. T.
,
Chong
,
A. C. M.
,
Lucas
,
G. L.
, and
Cooke
,
F. W.
, 2008, “
Structural Properties of a Novel Design of Composite Analogue Humeri Models
,”
Ann. Biomed. Eng.
,
36
(
11
), pp.
1922
1926
.
27.
Norton
,
R. L.
, 1996,
Machine Design: An Integrated Approach
,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
219
226
.
28.
Sawbones Worldwide
, Vashon, WA, USA, www.sawbones.comwww.sawbones.com, 2006 product catalog.
29.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
ASME J. Biomech. Eng.
,
129
, pp.
12
19
.
30.
Shah
,
S.
,
Kim
,
S. Y. R.
,
Dubov
,
A.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
, 2011, “
The Biomechanics of Plate Fixation of Periprosthetic Femoral Fractures Near the Tip of a Total Hip Implant: Cables, Screws, or Both?
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
9
), pp.
845
856
(Epub 2011 June 30).
31.
Dubov
,
A.
,
Kim
,
S. Y. R.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Zdero
,
R.
, and
Bougherara
,
H.
, 2011, “
The Biomechanics of Plate Repair of Periprosthetic Femur Fractures Near the Tip of a Total Hip Implant: The Effect of Cable-Screw Position
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
9
), pp.
857
865
(Epub 2011 June 16).
32.
Lescheid
,
J.
,
Zdero
,
R.
,
Shah
,
S.
,
Kuzyk
,
P. R. T.
, and
Schemitsch
,
E. H.
, 2010, “
The Biomechanics of Locked Plating for Repairing Proximal Humerus Fractures With or Without Medial Cortical Support
,”
J. Trauma
,
69
(
5
), pp.
1235
1242
.
33.
Zdero
,
R.
,
Elfallah
,
K.
,
Olsen
,
M.
, and
Schemitsch
,
E. H.
, 2009, “
Cortical Screw Purchase in Synthetic and Human Femurs
,”
ASME J. Biomech. Eng.
,
131
(
9
), pp.
094503
-1–094503-
7
.
34.
Zdero
,
R.
,
Olsen
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E. H.
, 2008, “
Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
H8
), pp.
1175
1183
.
35.
Nicayenzi
,
B.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
, 2011, “
The Biomechanical Effect of Changes in Cancellous Bone Density on Synthetic Femur Behaviour
,
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
11
), pp.
1050
1060
(Epub 2011 Sept 9).
36.
Lever
,
J. P.
,
Aksenov
,
S. A.
,
Zdero
,
R.
,
Ahn
,
H.
,
McKee
,
M. D.
, and
Schemitsch
,
E. H.
, 2008, “
Biomechanical Analysis of Plate Osteosynthesis Systems for Proximal Humerus Fractures
,”
J. Orthop. Trauma
,
22
(
1
), pp.
23
29
.
37.
Koval
,
K. J.
,
Blair
,
B.
,
Takei
,
R.
,
Kummer
,
F. J.
, and
Zuckerman
,
J. D.
, 1996, “
Surgical Neck Fractures of the Proximal Humerus: A Laboratory Evaluation of Ten Fixation Techniques
,”
J. Trauma
,
40
(
5
), pp.
778
783
.
38.
Bougherara
,
H.
,
Zdero
,
R.
,
Mahboob
,
Z.
,
Dubov
,
A.
,
Shah
,
S.
, and
Schemitsch
,
E. H.
, 2010, “
The Biomechanics of a Validated Finite Element Model of Stress Shielding in a Novel Hybrid Total Knee Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
10
), pp.
1209
1219
.
39.
Davis
,
E. T.
,
Olsen
,
M.
,
Zdero
,
R.
,
Papini
,
M.
, and
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2009, “
A Biomechanical and Finite Element Analysis of Femoral Neck Notching During Hip Resurfacing
,”
ASME J. Biomech. Eng.
,
131
(
4
), pp.
041002
-1–041002-
8
.
40.
Bougherara
,
H.
,
Zdero
,
R.
,
Miric
,
M.
,
Shah
,
S.
,
Hardisty
,
M.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
, 2009, “
The Biomechanics of the T2 Femoral Nailing System: A Comparison of Synthetic Femurs With Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
223
(
H3
), pp.
303
314
.
41.
Gardner
,
M. J.
,
Griffith
,
M. H.
,
Demetrakopoulos
,
D.
,
Brophy
,
R. H.
,
Grose
,
A.
,
Helfet
,
D. L.
, and
Lorich
,
D. G.
, 2006, “
Hybrid Locked Plating of Osteoporotic Fractures of the Humerus
,”
J. Bone Joint Surg. Am.
,
88
(
9
), pp.
1962
1967
.
You do not currently have access to this content.