The bicuspid aortic valve (BAV), which forms with two leaflets instead of three as in the normal tricuspid aortic valve (TAV), is associated with a spectrum of secondary valvulopathies and aortopathies potentially triggered by hemodynamic abnormalities. While studies have demonstrated an intrinsic degree of stenosis and the existence of a skewed orifice jet in the BAV, the impact of those abnormalities on BAV hemodynamic performance and energy loss has not been examined. This steady-flow study presents the comparative in vitro assessment of the flow field and energy loss in a TAV and type-I BAV under normal and simulated calcified states. Particle-image velocimetry (PIV) measurements were performed to quantify velocity, vorticity, viscous, and Reynolds shear stress fields in normal and simulated calcified porcine TAV and BAV models at six flow rates spanning the systolic phase. The BAV model was created by suturing the two coronary leaflets of a porcine TAV. Calcification was simulated via deposition of glue beads in the base of the leaflets. Valvular performance was characterized in terms of geometric orifice area (GOA), pressure drop, effective orifice area (EOA), energy loss (EL), and energy loss index (ELI). The BAV generated an elliptical orifice and a jet skewed toward the noncoronary leaflet. In contrast, the TAV featured a circular orifice and a jet aligned along the valve long axis. While the BAV exhibited an intrinsic degree of stenosis (18% increase in maximum jet velocity and 7% decrease in EOA relative to the TAV at the maximum flow rate), it generated only a 3% increase in EL and its average ELI (2.10 cm2/m2) remained above the clinical threshold characterizing severe aortic stenosis. The presence of simulated calcific lesions normalized the alignment of the BAV jet and resulted in the loss of jet axisymmetry in the TAV. It also amplified the degree of stenosis in the TAV and BAV, as indicated by the 342% and 404% increase in EL, 70% and 51% reduction in ELI and 48% and 51% decrease in EOA, respectively, relative to the nontreated valve models at the maximum flow rate. This study indicates the ability of the BAV to function as a TAV despite its intrinsic degree of stenosis and suggests the weak dependence of pressure drop on orifice area in calcified valves.

References

1.
Roberts
,
W. C.
,
1970
, “
The Congenitally Bicuspid Aortic Valve. A Study of 85 Autopsy Cases
,”
Am. J. Cardiol.
,
26
(
1
), pp.
72
83
.10.1016/0002-9149(70)90761-7
2.
Sabet
,
H. Y.
,
Edwards
,
W. D.
,
Tazelaar
,
H. D.
, and
Daly
,
R. C.
,
1999
, “
Congenitally Bicuspid Aortic Valves: A Surgical Pathology Study of 542 Cases (1991–1996) and a Literature Review of 2715 Additional Cases
,”
Mayo Clin. Proc.
,
74
(
1
), pp.
14
26
.10.4065/74.1.14
3.
Beppu
,
S.
,
Suzuki
,
S.
,
Matsuda
,
H.
,
Ohmori
,
F.
,
Nagata
,
S.
, and
Miyatake
,
K.
,
1993
, “
Rapidity of Progression of Aortic Stenosis in Patients With Congenital Bicuspid Aortic Valves
,”
Am. J. Cardiol.
,
71
(
4
), pp.
322
327
.10.1016/0002-9149(93)90799-I
4.
Braverman
,
A. C.
,
1996
, “
Bicuspid Aortic Valve and Associated Aortic Wall Abnormalities
,”
Curr. Opin. Cardiol.
,
11
(
5
), pp.
501
503
.10.1097/00001573-199609000-00009
5.
Subramanian
,
R.
,
Olson
,
L. J.
, and
Edwards
,
W. D.
,
1984
, “
Surgical Pathology of Pure Aortic Stenosis: A Study of 374 Cases
,”
Mayo Clin. Proc.
,
59
(
10
), pp.
683
690
.10.1016/S0025-6196(12)62057-6
6.
Braverman
,
A. C.
,
Guven
,
H.
,
Beardslee
,
M. A.
,
Makan
,
M.
,
Kates
,
A. M.
, and
Moon
,
M. R.
,
2005
, “
The Bicuspid Aortic Valve
,”
Curr. Probl. Cardiol.
,
30
(
9
), pp.
470
522
.10.1016/j.cpcardiol.2005.06.002
7.
Siu
,
S. C.
, and
Silversides
,
C. K.
,
2010
, “
Bicuspid Aortic Valve Disease
,”
J. Am. Coll. Cardiol.
,
55
(
25
), pp.
2789
2800
.10.1016/j.jacc.2009.12.068
8.
Robicsek
,
F.
,
Thubrikar
,
M. J.
,
Cook
,
J. W.
, and
Fowler
,
B.
,
2004
, “
The Congenitally Bicuspid Aortic Valve: How Does it Function? Why Does it Fail?
,”
Ann. Thorac. Surg.
,
77
(
1
), pp.
177
185
.10.1016/S0003-4975(03)01249-9
9.
Fowles
,
R. E.
,
Martin
,
R. P.
,
Abrams
,
J. M.
,
Schapira
,
J. N.
,
French
,
J. W.
, and
Popp
,
R. L.
,
1979
, “
Two-Dimensional Echocardiographic Features of Bicuspid Aortic Valve
,”
Chest
,
75
(
4
), pp.
434
440
.10.1378/chest.75.4.434
10.
Nanda
,
N. C.
,
Gramiak
,
R.
,
Manning
,
J.
,
Mahoney
,
E. B.
,
Lipchik
,
E. O.
, and
DeWeese
,
J. A.
,
1974
, “
Echocardiographic Recognition of the Congenital Bicuspid Aortic Valve
,”
Circulation
,
49
(
5
), pp.
870
875
.10.1161/01.CIR.49.5.870
11.
Barker
,
A. J.
, and
Markl
,
M.
,
2011
, “
The Role of Hemodynamics in Bicuspid Aortic Valve Disease
,”
Eur. J. Cardiothorac. Surg.
,
39
(
6
), pp.
805
806
.10.1016/j.ejcts.2011.01.006
12.
Hope
,
M. D.
,
Meadows
,
A. K.
,
Hope
,
T. A.
,
Ordovas
,
K. G.
,
Reddy
,
G. P.
,
Alley
,
M. T.
, and
Higgins
,
C. B.
,
2008
, “
Images in Cardiovascular Medicine. Evaluation of Bicuspid Aortic Valve and Aortic Coarctation With 4D Flow Magnetic Resonance Imaging
,”
Circulation
,
117
(
21
), pp.
2818
2819
.10.1161/CIRCULATIONAHA.107.760124
13.
Hope
,
M. D.
,
Hope
,
T. A.
,
Meadows
,
A. K.
,
Ordovas
,
K. G.
,
Urbania
,
T. H.
,
Alley
,
M. T.
, and
Higgins
,
C. B.
,
2010
, “
Bicuspid Aortic Valve: Four-Dimensional MR Evaluation of Ascending Aortic Systolic Flow Patterns
,”
Radiology
,
255
(
1
), pp.
53
61
.10.1148/radiol.09091437
14.
Jermihov
,
P. N.
,
Jia
,
L.
,
Sacks
,
M. S.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Chandran
,
K. B.
,
2011
, “
Effect of Geometry on the Leaflet Stresses in Simulated Models of Congenital Bicuspid Aortic Valves
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
48
56
.10.1007/s13239-011-0035-9
15.
Weinberg
,
E. J.
, and
Kaazempur Mofrad
,
M. R.
,
2008
, “
A Multiscale Computational Comparison of the Bicuspid and Tricuspid Aortic Valves in Relation to Calcific Aortic Stenosis
,”
J. Biomech.
,
41
(
16
), pp.
3482
3487
.10.1016/j.jbiomech.2008.08.006
16.
Chandra
,
S.
,
Rajamannan
,
N. M.
, and
Sucosky
,
P.
,
2012
, “
Computational Assessment of Bicuspid Aortic Valve Wall-Shear Stress: Implications for Calcific Aortic Valve Disease
,”
Biomech. Model. Mechanobiol.
,
11
(
7
), pp.
1085
1096
.10.1007/s10237-012-0375-x
17.
Yap
,
C. H.
,
Saikrishnan
,
N.
,
Tamilselvan
,
G.
,
Vasilyev
,
N.
,
Yoganathan
,
A. P.
, and
Vasiliyev
,
N. V.
,
2012
, “
The Congenital Bicuspid Aortic Valve can Experience High Frequency Unsteady Shear Stresses on Its Leaflet Surface
,”
Am. J. Physiol. Heart Circ. Physiol.
,
303
(
6
), pp.
H721
H731
.10.1152/ajpheart.00829.2011
18.
Saikrishnan
,
N.
,
Yap
,
C.-H.
,
Milligan
,
N. C.
,
Vasilyev
,
N. V.
, and
Yoganathan
,
A. P.
,
2012
, “
In vitro Characterization of Bicuspid Aortic Valve Hemodynamics Using Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1760
1775
.10.1007/s10439-012-0527-2
19.
Sucosky
,
P.
,
Balachandran
,
K.
,
Elhammali
,
A.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
,
2009
, “
Altered Shear Stress Stimulates Upregulation of Endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-Beta1-Dependent Pathway
,”
Arterioscler. Thromb. Vasc. Biol.
,
29
(
2
), pp.
254
260
.10.1161/ATVBAHA.108.176347
20.
Hoehn
,
D.
,
Sun
,
L.
, and
Sucosky
,
P.
,
2010
, “
Role of Pathologic Shear Stress Alterations in Aortic Valve Endothelial Activation
,”
Cardiovasc. Eng. Technol.
,
1
(
2
), pp.
165
178
.10.1007/s13239-010-0015-5
21.
Sun
,
L.
,
Chandra
,
S.
, and
Sucosky
,
P.
,
2012
, “
Ex Vivo Evidence for the Contribution of Hemodynamic Shear Stress Abnormalities to the Early Pathogenesis of Calcific Bicuspid Aortic Valve Disease
,”
PLoS One
,
7
(
10
), p.
e48843
.10.1371/journal.pone.0048843
22.
Girdauskas
,
E.
,
Disha
,
K.
,
Borger
,
M.-A.
, and
Kuntze
,
T.
, “
Relation of Bicuspid Aortic Valve Morphology to the Dilatation Pattern of the Proximal Aorta: Focus on the Transvalvular Flow
,”
Cardiol. Res. Pract.
,
2012
, p.
478259
.
23.
Garcia
,
D.
,
Dumesnil
,
J. G.
,
Durand
,
L.-G.
,
Kadem
,
L.
, and
Pibarot
,
P.
,
2003
, “
Discrepancies Between Catheter and Doppler Estimates of Valve Effective Orifice Area can be Predicted From the Pressure Recovery Phenomenon: Practical Implications With Regard to Quantification of Aortic Stenosis Severity
,”
J. Am. Coll. Cardiol.
,
41
(
3
), pp.
435
442
.10.1016/S0735-1097(02)02764-X
24.
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Chatterjee
,
K.
,
de Leon
,
A. C.
,
Faxon
,
D. P.
,
Freed
,
M. D.
,
Gaasch
,
W. H.
,
Lytle
,
B. W.
,
Nishimura
,
R. A.
,
O'Gara
,
P. T.
,
O'Rourke
,
R. A.
,
Otto
,
C. M.
,
Shah
,
P. M.
, and
Shanewise
,
J. S.
,
2008
, “
2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease
,”
J. Am. Coll. Cardiol.
,
52
(
13
), pp.
e1
e142
.10.1016/j.jacc.2008.05.007
25.
Skjaerpe
,
T.
,
Hegrenaes
,
L.
, and
Hatle
,
L.
,
1985
, “
Noninvasive Estimation of Valve Area in Patients With Aortic Stenosis by Doppler Ultrasound and Two-Dimensional Echocardiography
,”
Circulation
,
72
(
4
), pp.
810
818
.10.1161/01.CIR.72.4.810
26.
Dumesnil
,
J. G.
,
Honos
,
G. N.
,
Lemieux
,
M.
, and
Beauchemin
,
J.
,
1990
, “
Validation and Applications of Indexed Aortic Prosthetic Valve Areas Calculated by Doppler Echocardiography
,”
J. Am. Coll. Cardiol.
,
16
(
3
), pp.
637
643
.10.1016/0735-1097(90)90355-S
27.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Casey Jones
,
S.
,
2004
, “
Fluid Mechanics of Heart Valves
,”
Annu Rev Biomed Eng
,
6
, pp.
331
362
.10.1146/annurev.bioeng.6.040803.140111
28.
Gjertsson
,
P.
,
Caidahl
,
K.
,
Svensson
,
G.
,
Wallentin
,
I.
, and
Bech-Hanssen
,
O.
,
2001
, “
Important Pressure Recovery in Patients With Aortic Stenosis and High Doppler Gradients
,”
Am. J. Cardiol.
,
88
(
2
), pp.
139
144
.10.1016/S0002-9149(01)01608-3
29.
Tasca
,
G.
,
Mhagna
,
Z.
,
Perotti
,
S.
,
Centurini
,
P. B.
,
Sabatini
,
T.
,
Amaducci
,
A.
,
Brunelli
,
F.
,
Cirillo
,
M.
,
Dalla Tomba
,
M.
,
Quaini
,
E.
,
Troise
,
G.
, and
Pibarot
,
P.
,
2006
, “
Impact of Prosthesis-Patient Mismatch on Cardiac Events and Midterm Mortality After Aortic Valve Replacement in Patients With Pure Aortic Stenosis
,”
Circulation
,
113
(
4
), pp.
570
576
.10.1161/CIRCULATIONAHA.105.587022
30.
Garcia
,
D.
,
Pibarot
,
P.
,
Dumesnil
,
J. G.
,
Sakr
,
F.
, and
Durand
,
L. G.
,
2000
, “
Assessment of Aortic Valve Stenosis Severity: A New Index Based on the Energy Loss Concept
,”
Circulation
,
101
(
7
), pp.
765
771
.10.1161/01.CIR.101.7.765
31.
Yap
,
C.-H.
,
Dasi
,
L. P.
, and
Yoganathan
,
A. P.
,
2010
, “
Dynamic Hemodynamic Energy Loss in Normal and Stenosed Aortic Valves.
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021005
.10.1115/1.4000874
32.
Schaefer
,
B. M.
,
Lewin
,
M. B.
,
Stout
,
K. K.
,
Gill
,
E.
,
Prueitt
,
A.
,
Byers
,
P. H.
, and
Otto
,
C. M.
,
2008
, “
The Bicuspid Aortic Valve: An Integrated Phenotypic Classification of Leaflet Morphology and Aortic Root Shape
,”
Heart
,
94
(
12
), pp.
1634
1638
.10.1136/hrt.2007.132092
33.
Sievers
,
H.-H.
, and
Schmidtke
,
C.
,
2007
, “
A Classification System for the Bicuspid Aortic Valve From 304 Surgical Specimens
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
5
), pp.
1226
1233
.10.1016/j.jtcvs.2007.01.039
34.
Yap
,
C. H.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2011
, “
Experimental Measurement of Dynamic Fluid Shear Stress on the Ventricular Surface of the Aortic Valve Leaflet
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
231
244
.10.1007/s10237-011-0306-2
35.
Otto
,
C. M.
,
Kuusisto
,
J.
, and
Reichenbach
,
D. D.
,
1994
, “
Characterization of the Early Lesion of “Degenerative” Valvular Aortic Stenosis. Histological and Immunohistochemical Studies
,”
Circulation
,
90
(
2
), pp.
844
853
.10.1161/01.CIR.90.2.844
36.
Willmann
,
J. K.
,
Weishaupt
,
D.
,
Lachat
,
M.
,
Kobza
,
R.
,
Roos
,
J. E.
,
Seifert
,
B.
,
Lüscher
,
T. F.
,
Marincek
,
B.
, and
Hilfiker
,
P. R.
,
2002
, “
Electrocardiographically Gated Multi-Detector Row CT for Assessment of Valvular Morphology and Calcification in Aortic Stenosis
,”
Radiology
,
225
(
1
), pp.
120
128
.10.1148/radiol.2251011703
37.
Freeman
,
R.
V
, and
Otto
,
C. M.
,
2005
, “
Spectrum of Calcific Aortic Valve Disease: Pathogenesis, Disease Progression, and Treatment Strategies
,”
Circulation
,
111
(
24
), pp.
3316
3326
.10.1161/CIRCULATIONAHA.104.486738
38.
Chen
,
J.
,
Manning
,
M.
,
Frazier
,
A.
,
Jeudy
,
J.
, and
White
,
C.
,
2009
, “
CT Angiography of the Cardiac Valves: Normal, Diseased, and Postoperative Appearances
,”
Radiographics
,
29
(
5
), pp.
1393
1412
.10.1148/rg.295095002
39.
Angelini
,
A.
,
Ho
,
S. Y.
,
Anderson
,
R. H.
,
Devine
,
W. A.
,
Zuberbuhler
,
J. R.
,
Becker
,
A. E.
, and
Davies
,
M. J.
,
1989
, “
The Morphology of the Normal Aortic Valve as Compared With the Aortic Valve Having Two Leaflets
,”
J. Thorac. Cardiovasc. Surg.
,
98
(
3
), pp.
362
367
.
40.
Swanson
,
W. M.
, and
Clark
,
R. E.
,
1974
, “
Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure
,”
Circulation
,
35
(
6
), pp.
871
882
.10.1161/01.RES.35.6.871
41.
Leo
,
H. L.
,
2005
, “
An In Vitro Investigation of the Flow Fields Through Bileaflet and Polymeric Prosthetic Heart Valves
,” Ph.D. thesis, Department of Biomedical Engineering, Georgia Institute of Technology.
42.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H. A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2007
, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
,
19
(
6
), p.
67105
.10.1063/1.2743261
43.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
,
2001
, “
Pulsatile Flow Studies of a Porcine Bioprosthetic Aortic Valve In Vitro: PIV Measurements and Shear-Induced Blood Damage
,”
J. Biomech.
,
34
(
11
), pp.
1417
1427
.10.1016/S0021-9290(01)00132-4
44.
Gorlin
,
R.
, and
Gorlin
,
S.
,
1951
, “
Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, Other Cardiac Valves, and Central Circulatory Shunts
,”
Am. Heart J.
,
41
(
1
), pp.
1
29
.10.1016/0002-8703(51)90002-6
45.
Chandran
,
K.
,
Ritgers
,
S.
, and
Yoganathan
,
A.
,
2012
,
Cardiac Valve Stenoses, Biofluid Mechanics: The Human Circulation
,
CRC Press
,
Boca Raton
, FL, pp.
159
164
.
46.
Sacco
,
J. J.
,
Botten
,
J.
,
Macbeth
,
F.
,
Bagust
,
A.
, and
Clark
,
P.
,
2010
, “
The Average Body Surface Area of Adult Cancer Patients in the UK: A Multicentre Retrospective Study
,”
PLoS One
,
5
(
1
), p.
e8933
.10.1371/journal.pone.0008933
47.
Balachandran
,
K.
,
Sucosky
,
P.
, and
Yoganathan
,
A. P.
, “
Hemodynamics and Mechanobiology of Aortic Valve Inflammation and Calcification
,”
Int. J. Inflam.
,
2011
, p.
263870
.
48.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.10.1007/s10439-007-9411-x
49.
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Chatterjee
,
K.
,
de Leon
,
A. C.
,
Faxon
,
D. P.
,
Freed
,
M. D.
,
Gaasch
,
W. H.
,
Lytle
,
B. W.
,
Nishimura
,
R. A.
,
O'Gara
,
P. T.
,
O'Rourke
,
R. A.
,
Otto
,
C. M.
,
Shah
,
P. M.
,
Shanewise
,
J. S.
,
Smith
,
S. C.
Jr
.
,
Jacobs
,
A. K.
,
Adams
,
C. D.
,
Anderson
,
J. L.
,
Antman
,
E. M.
,
Fuster
,
V.
,
Halperin
,
J. L.
,
Hiratzka
,
L. F.
,
Hunt
,
S. A.
,
Nishimura
,
R.
,
Page
,
R. L.
, and
Riegel
,
B.
,
2006
, “
ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Manage
,”
Circulation
,
114
(
5
), pp.
e84
e231
.10.1161/CIRCULATIONAHA.106.176857
50.
Weston
,
M. W.
,
LaBorde
,
D. V.
, and
Yoganathan
,
A. P.
,
1999
, “
Estimation of the Shear Stress on the Surface of an Aortic Valve Leaflet
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
572
579
.10.1114/1.199
51.
Barker
,
A. J.
,
Markl
,
M.
,
Bürk
,
J.
,
Lorenz
,
R.
,
Bock
,
J.
,
Bauer
,
S.
,
Schulz-Menger
,
J.
, and
von Knobelsdorff-Brenkenhoff
,
F.
,
2012
, “
Bicuspid Aortic Valve is Associated With Altered Wall Shear Stress in the Ascending Aorta
,”
Circ. Cardiovasc. Imaging
,
5
(
4
), pp.
457
466
.10.1161/CIRCIMAGING.112.973370
52.
Meierhofer
,
C.
,
Schneider
,
E. P.
,
Lyko
,
C.
,
Hutter
,
A.
,
Martinoff
,
S.
,
Markl
,
M.
,
Hager
,
A.
,
Hess
,
J.
,
Stern
,
H.
, and
Fratz
,
S.
,
2012
, “
Wall Shear Stress and Flow Patterns in the Ascending Aorta in Patients With Bicuspid Aortic Valves Differ Significantly From Tricuspid Aortic Valves: A Prospective Study
,”
Eur. Heart J. Cardiovasc. Imaging
,
14
(
8
), pp.
797
804
.10.1093/ehjci/jes273
53.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2006
, “
Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters
,”
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
, pp.
382
383
.
54.
Miller
,
R. W.
,
1983
,
Flow Measurement Engineering Handbook
, McGraw-Hill, New York.
55.
Heinrich
,
R. S.
,
Fontaine
,
A. A.
,
Grimes
,
R. Y.
,
Sidhaye
,
A.
,
Yang
,
S.
,
Moore
,
K. E.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
, “
Experimental Analysis of Fluid Mechanical Energy Losses in Aortic Valve Stenosis: Importance of Pressure Recovery
,”
Ann. Biomed. Eng.
,
24
(
6
), pp.
685
694
.10.1007/BF02684181
56.
Baumgartner
,
H.
,
Khan
,
S.
,
DeRobertis
,
M.
,
Czer
,
L.
, and
Maurer
,
G.
,
1990
, “
Discrepancies Between Doppler and Catheter Gradients in Aortic Prosthetic Valves in vitro. A Manifestation of Localized Gradients and Pressure Recovery
,”
Circulation
,
82
(
4
), pp.
1467
1475
.10.1161/01.CIR.82.4.1467
57.
Ge
,
L.
,
Leo
,
H.-L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2005
, “
Flow in a Mechanical Bileaflet Heart Valve at Laminar and Near-Peak Systole Flow Rates: CFD Simulations and Experiments
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
782
797
.10.1115/1.1993665
58.
Leo
,
H. L.
,
Dasi
,
L. P.
,
Carberry
,
J.
,
Simon
,
H. A.
, and
Yoganathan
,
A. P.
,
2006
, “
Fluid Dynamic Assessment of Three Polymeric Heart Valves Using Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
936
952
.10.1007/s10439-006-9117-5
You do not currently have access to this content.