Selective laser sintering (SLS) is a well-suited additive manufacturing technique for generating subject-specific passive-dynamic ankle-foot orthoses (PD-AFOs). However, the mechanical properties of SLS PD-AFOs may differ from those of commonly prescribed carbon fiber (CF) PD-AFOs. Therefore, the goal of this study was to determine if biomechanical measures during gait differ between CF and stiffness-matched SLS PD-AFOs. Subject-specific SLS PD-AFOs were manufactured for ten subjects with unilateral lower-limb impairments. Minimal differences in gait performance occurred when subjects used the SLS versus CF PD-AFOs. These results support the use of SLS PD-AFOs to study the effects of altering design characteristics on gait performance.
Issue Section:
Research Papers
References
1.
Patzkowski
, J. C.
, Blanck
, R. V.
, Owens
, J. G.
, Wilken
, J. M.
, Kirk
, K. L.
, Wenke
, J. C.
, and Hsu
, J. R.
, 2012
, “Comparative Effect of Orthosis Design on Functional Performance
,” J. Bone Joint Surg. Am.
, 94
(6
), pp. 507
–515
.10.2106/JBJS.K.002542.
Neptune
, R. R.
, Kautz
, S. A.
, and Zajac
, F. E.
, 2001
, “Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,” J. Biomech.
, 34
(11
), pp. 1387
–1398
.10.1016/S0021-9290(01)00105-13.
Liu
, M. Q.
, Anderson
, F. C.
, Pandy
, M. G.
, and Delp
, S. L.
, 2006
, “Muscles That Support the Body Also Modulate Forward Progression During Walking
,” J. Biomech.
, 39
(14
), pp. 2623
–2630
.10.1016/j.jbiomech.2005.08.0174.
Allen
, J. L.
, and Neptune
, R. R.
, 2012
, “Three-Dimensional Modular Control of Human Walking
,” J. Biomech.
, 45
(12
), pp. 2157
–2163
.10.1016/j.jbiomech.2012.05.0375.
Pandy
, M. G.
, Lin
, Y. C.
, and Kim
, H. J.
, 2010
, “Muscle Coordination of Mediolateral Balance in Normal Walking
,” J. Biomech.
, 43
(11
), pp. 2055
–2064
.10.1016/j.jbiomech.2010.04.0106.
Owens
, J. G.
, Blair
, J. A.
, Patzkowski
, J. C.
, Blanck
, R. V.
, and Hsu
, J. R.
, 2011
, “Return to Running and Sports Participation After Limb Salvage
,” J. Trauma
, 71
(1 Suppl
), pp. S120
–S124
.10.1097/TA.0b013e31822192257.
Buckon
, C. E.
, Thomas
, S. S.
, Jakobson-Huston
, S.
, Moor
, M.
, Sussman
, M.
, and Aiona
, M.
, 2004
, “Comparison of Three Ankle-Foot Orthosis Configurations for Children With Spastic Diplegia
,” Dev. Med. Child Neurol.
, 46
(9
), pp. 590
–598
.10.1111/j.1469-8749.2004.tb01022.x8.
Bregman
, D. J.
, De Groot
, V.
, Van Diggele
, P.
, Meulman
, H.
, Houdijk
, H.
, and Harlaar
, J.
, 2010
, “Polypropylene Ankle Foot Orthoses to Overcome Drop-Foot Gait in Central Neurological Patients: A Mechanical and Functional Evaluation
,” Prosthet. Orthot. Int.
, 34
(3
), pp. 293
–304
.10.3109/03093646.2010.4959699.
Gok
, H.
, Kucukdeveci
, A.
, Altinkaynak
, H.
, Yavuzer
, G.
, and Ergin
, S.
, 2003
, “Effects of Ankle-Foot Orthoses on Hemiparetic Gait
,” Clin. Rehabil.
, 17
(2
), pp. 137
–139
.10.1191/0269215503cr605oa10.
Lehmann
, J. F.
, Condon
, S. M.
, De Lateur
, B. J.
, and Price
, R.
, 1986
, “Gait Abnormalities in Peroneal Nerve Paralysis and Their Corrections by Orthoses: A Biomechanical Study
,” Arch. Phys. Med. Rehabil.
, 67
(6
), pp. 380
–386
.11.
Tyson
, S. F.
, and Thornton
, H. A.
, 2001
, “The Effect of a Hinged Ankle Foot Orthosis on Hemiplegic Gait: Objective Measures and Users' Opinions
,” Clin. Rehabil.
, 15
(1
), pp. 53
–58
.10.1191/02692150167385890812.
Buckon
, C. E.
, Thomas
, S. S.
, Jakobson-Huston
, S.
, Sussman
, M.
, and Aiona
, M.
, 2001
, “Comparison of Three Ankle-Foot Orthosis Configurations for Children With Spastic Hemiplegia
,” Dev. Med. Child Neurol.
, 43
(6
), pp. 371
–378
.10.1017/S001216220100070613.
Lehmann
, J. F.
, Condon
, S. M.
, De Lateur
, B. J.
, and Smith
, J. C.
, 1985
, “Ankle-Foot Orthoses: Effect on Gait Abnormalities in Tibial Nerve Paralysis
,” Arch. Phys. Med. Rehabil.
, 66
(4
), pp. 212
–218
.10.1016/0003-9993(85)90145-514.
De Wit
, D. C.
, Buurke
, J. H.
, Nijlant
, J. M.
, Ijzerman
, M. J.
, and Hermens
, H. J.
, 2004
, “The Effect of an Ankle-Foot Orthosis on Walking Ability in Chronic Stroke Patients: A Randomized Controlled Trial
,” Clin. Rehabil.
, 18
(5
), pp. 550
–557
.10.1191/0269215504cr770oa15.
Ramstrand
, N.
, and Ramstrand
, S.
, 2010
, “AAOP State-of-the-Science Evidence Report: The Effect of Ankle-Foot Orthoses on Balance—A Systematic Review
,” J. Prosthet. Orthot.
, 22
, pp. 4
–23
.10.1097/JPO.0b013e3181f379b716.
Faustini
, M. C.
, Neptune
, R. R.
, Crawford
, R. H.
, and Stanhope
, S. J.
, 2008
, “Manufacture of Passive Dynamic Ankle-Foot Orthoses Using Selective Laser Sintering
,” IEEE Trans. Biomed. Eng.
, 55
(2 Pt 1
), pp. 784
–790
.10.1109/TBME.2007.91263817.
Danielsson
, A.
, and Sunnerhagen
, K. S.
, 2004
, “Energy Expenditure in Stroke Subjects Walking With a Carbon Composite Ankle Foot Orthosis
,” J. Rehabil. Med.
, 36
(4
), pp. 165
–168
.10.1080/1650197041002512618.
Desloovere
, K.
, Molenaers
, G.
, Van Gestel
, L.
, Huenaerts
, C.
, Van Campenhout
, A.
, Callewaert
, B.
, Van De Walle
, P.
, and Seyler
, J.
, 2006
, “How Can Push-Off Be Preserved During Use of an Ankle Foot Orthosis in Children With Hemiplegia? A Prospective Controlled Study
,” Gait Posture
, 24
(2
), pp. 142
–151
.10.1016/j.gaitpost.2006.08.00319.
Van Gestel
, L.
, Molenaers
, G.
, Huenaerts
, C.
, Seyler
, J.
, and Desloovere
, K.
, 2008
, “Effect of Dynamic Orthoses on Gait: A Retrospective Control Study in Children With Hemiplegia
,” Dev. Med. Child Neurol.
, 50
(1
), pp. 63
–67
.10.1111/j.1469-8749.2007.02014.x20.
Wolf
, S. I.
, Alimusaj
, M.
, Rettig
, O.
, and Doderlein
, L.
, 2008
, “Dynamic Assist by Carbon Fiber Spring AFOs for Patients With Myelomeningocele
,” Gait Posture
, 28
(1
), pp. 175
–177
.10.1016/j.gaitpost.2007.11.01221.
Bartonek
, A.
, Eriksson
, M.
, and Gutierrez-Farewik
, E. M.
, 2007
, “Effects of Carbon Fibre Spring Orthoses on Gait in Ambulatory Children With Motor Disorders and Plantarflexor Weakness
,” Dev. Med. Child Neurol.
, 49
(8
), pp. 615
–620
.10.1111/j.1469-8749.2007.00615.x22.
Schrank
, E. S.
, and Stanhope
, S. J.
, 2011
, “Dimensional Accuracy of Ankle-Foot Orthoses Constructed by Rapid Customization and Manufacturing Framework
,” J. Rehabil. Res. Dev.
, 48
(1
), pp. 31
–42
.10.1682/JRRD.2009.12.019523.
Creylman
, V.
, Muraru
, L.
, Pallari
, J.
, Vertommen
, H.
, and Peeraer
, L.
, 2013
, “Gait Assessment During the Initial Fitting of Customized Selective Laser Sintering Ankle Foot Orthoses in Subjects With Drop Foot
,” Prosthet. Orthot. Int.
, 37
(2
), pp. 132
–138
.10.1177/030936461245126924.
Pallari
, J. H.
, Dalgarno
, K. W.
, and Woodburn
, J.
, 2010
, “Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,” IEEE Trans. Biomed. Eng.
, 57
(7
), pp. 1750
–1756
.10.1109/TBME.2010.204417825.
Salles
, A. S.
, and Gyi
, D. E.
, 2013
, “An Evaluation of Personalised Insoles Developed Using Additive Manufacturing
,” J. Sports Sci.
, 31
(4
), pp. 442
–550
.10.1080/02640414.2012.73662926.
Faustini
, M. C.
, Neptune
, R. R.
, Crawford
, R. H.
, Rogers
, W. E.
, and Bosker
, G.
, 2006
, “An Experimental and Theoretical Framework for Manufacturing Prosthetic Sockets for Transtibial Amputees
,” IEEE Trans. Neural Syst. Rehabil. Eng.
, 14
(3
), pp. 304
–310
.10.1109/TNSRE.2006.88157027.
Rogers
, B.
, Bosker
, G.
, Faustini
, M.
, Walden
, G.
, Neptune
, R. R.
, and Crawford
, R.
, 2008
, “Case Report: Variably Compliant Transtibial Prosthetic Socket Fabricated Using Solid Freeform Fabrication
,” J. Prosthet. Orthot.
, 20
(1
), pp. 1
–7
.10.1097/JPO.0b013e31815ea83928.
Rogers
, B.
, Bosker
, G. W.
, Crawford
, R. H.
, Faustini
, M. C.
, Neptune
, R. R.
, Walden
, G.
, and Gitter
, A. J.
, 2007
, “Advanced Trans-Tibial Socket Fabrication Using Selective Laser Sintering
,” Prosthet. Orthot. Int.
, 31
(1
), pp. 88
–100
.10.1080/0309364060098392329.
Fey
, N. P.
, Klute
, G. K.
, and Neptune
, R. R.
, 2011
, “The Influence of Energy Storage and Return Foot Stiffness on Walking Mechanics and Muscle Activity in Below-Knee Amputees
,” Clin. Biomech. (Bristol, Avon)
, 26
(10
), pp. 1025
–1032
.10.1016/j.clinbiomech.2011.06.00730.
Ventura
, J. D.
, Klute
, G. K.
, and Neptune
, R. R.
, 2011
, “The Effects of Prosthetic Ankle Dorsiflexion and Energy Return on Below-Knee Amputee Leg Loading
,” Clin. Biomech. (Bristol, Avon)
, 26
(3
), pp. 298
–303
.10.1016/j.clinbiomech.2010.10.00331.
Ventura
, J. D.
, Klute
, G. K.
, and Neptune
, R. R.
, 2011
, “The Effect of Prosthetic Ankle Energy Storage and Return Properties on Muscle Activity in Below-Knee Amputee Walking
,” Gait Posture
, 33
(2
), pp. 220
–226
.10.1016/j.gaitpost.2010.11.00932.
Geboers
, J. F.
, Drost
, M. R.
, Spaans
, F.
, Kuipers
, H.
, and Seelen
, H. A.
, 2002
, “Immediate and Long-Term Effects of Ankle-Foot Orthosis on Muscle Activity During Walking: A Randomized Study of Patients With Unilateral Foot Drop
,” Arch. Phys. Med. Rehabil.
, 83
(2
), pp. 240
–245
.10.1053/apmr.2002.2746233.
Smith
, J. D.
, and Martin
, P. E.
, 2011
, “Short and Longer Term Changes in Amputee Walking Patterns Due to Increased Prosthesis Inertia
,” J. Prosthet. Orthot.
, 23
(3
), pp. 114
–123
.10.1097/JPO.0b013e3182248d9034.
Vaughan
, C. L.
, and O'malley
, M. J.
, 2005
, “Froude and the Contribution of Naval Architecture to Our Understanding of Bipedal Locomotion
,” Gait Posture
, 21
(3
), pp. 350
–362
.10.1016/j.gaitpost.2004.01.01135.
Wilken
, J. M.
, Rodriguez
, K. M.
, Brawner
, M.
, and Darter
, B. J.
, 2012
, “Reliability and Minimal Detectible Change Values for Gait Kinematics and Kinetics in Healthy Adults
,” Gait Posture
, 35
(2
), pp. 301
–307
.10.1016/j.gaitpost.2011.09.10536.
Dempster
, W. T.
, 1955
, “Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,” Wright-Patterson Air Force Base, Dayton, OH, Technical Report No. 55–159.37.
Wu
, G.
, and Cavanagh
, P. R.
, 1995
, “ISB Recommendations for Standardization in the Reporting of Kinematic Data
,” J. Biomech.
, 28
(10
), pp. 1257
–1261
.10.1016/0021-9290(95)00017-C38.
Wu
, G.
, Siegler
, S.
, Allard
, P.
, Kirtley
, C.
, Leardini
, A.
, Rosenbaum
, D.
, Whittle
, M.
, D'lima
, D. D.
, Cristofolini
, L.
, Witte
, H.
, Schmid
, O.
, and Stokes
, I.
, 2002
, “ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,” J. Biomech.
, 35
(4
), pp. 543
–548
.10.1016/S0021-9290(01)00222-639.
Grood
, E. S.
, and Suntay
, W. J.
, 1983
, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,” J. Biomech. Eng.
, 105
(2
), pp. 136
–144
.10.1115/1.313839740.
Baker
, R.
, 2001
, “Pelvic Angles: A Mathematically Rigorous Definition Which Is Consistent With a Conventional Clinical Understanding of the Terms
,” Gait Posture
, 13
(1
), pp. 1
–6
.10.1016/S0966-6362(00)00083-741.
Zeni
, J. A.
, Jr., Richards
, J. G.
, and Higginson
, J. S.
, 2008
, “Two Simple Methods for Determining Gait Events During Treadmill and Overground Walking Using Kinematic Data
,” Gait Posture
, 27
(4
), pp. 710
–714
.10.1016/j.gaitpost.2007.07.00742.
South
, B. J.
, Fey
, N. P.
, Bosker
, G.
, and Neptune
, R. R.
, 2010
, “Manufacture of Energy Storage and Return Prosthetic Feet Using Selective Laser Sintering
,” J. Biomech. Eng.
, 132
(1
), p. 015001
(1–6).10.1115/1.4000166Copyright © 2014 by ASME
You do not currently have access to this content.