Selective laser sintering (SLS) is a well-suited additive manufacturing technique for generating subject-specific passive-dynamic ankle-foot orthoses (PD-AFOs). However, the mechanical properties of SLS PD-AFOs may differ from those of commonly prescribed carbon fiber (CF) PD-AFOs. Therefore, the goal of this study was to determine if biomechanical measures during gait differ between CF and stiffness-matched SLS PD-AFOs. Subject-specific SLS PD-AFOs were manufactured for ten subjects with unilateral lower-limb impairments. Minimal differences in gait performance occurred when subjects used the SLS versus CF PD-AFOs. These results support the use of SLS PD-AFOs to study the effects of altering design characteristics on gait performance.

References

1.
Patzkowski
,
J. C.
,
Blanck
,
R. V.
,
Owens
,
J. G.
,
Wilken
,
J. M.
,
Kirk
,
K. L.
,
Wenke
,
J. C.
, and
Hsu
,
J. R.
,
2012
, “
Comparative Effect of Orthosis Design on Functional Performance
,”
J. Bone Joint Surg. Am.
,
94
(
6
), pp.
507
515
.10.2106/JBJS.K.00254
2.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.10.1016/S0021-9290(01)00105-1
3.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
,
2006
, “
Muscles That Support the Body Also Modulate Forward Progression During Walking
,”
J. Biomech.
,
39
(
14
), pp.
2623
2630
.10.1016/j.jbiomech.2005.08.017
4.
Allen
,
J. L.
, and
Neptune
,
R. R.
,
2012
, “
Three-Dimensional Modular Control of Human Walking
,”
J. Biomech.
,
45
(
12
), pp.
2157
2163
.10.1016/j.jbiomech.2012.05.037
5.
Pandy
,
M. G.
,
Lin
,
Y. C.
, and
Kim
,
H. J.
,
2010
, “
Muscle Coordination of Mediolateral Balance in Normal Walking
,”
J. Biomech.
,
43
(
11
), pp.
2055
2064
.10.1016/j.jbiomech.2010.04.010
6.
Owens
,
J. G.
,
Blair
,
J. A.
,
Patzkowski
,
J. C.
,
Blanck
,
R. V.
, and
Hsu
,
J. R.
,
2011
, “
Return to Running and Sports Participation After Limb Salvage
,”
J. Trauma
,
71
(
1 Suppl
), pp.
S120
S124
.10.1097/TA.0b013e3182219225
7.
Buckon
,
C. E.
,
Thomas
,
S. S.
,
Jakobson-Huston
,
S.
,
Moor
,
M.
,
Sussman
,
M.
, and
Aiona
,
M.
,
2004
, “
Comparison of Three Ankle-Foot Orthosis Configurations for Children With Spastic Diplegia
,”
Dev. Med. Child Neurol.
,
46
(
9
), pp.
590
598
.10.1111/j.1469-8749.2004.tb01022.x
8.
Bregman
,
D. J.
,
De Groot
,
V.
,
Van Diggele
,
P.
,
Meulman
,
H.
,
Houdijk
,
H.
, and
Harlaar
,
J.
,
2010
, “
Polypropylene Ankle Foot Orthoses to Overcome Drop-Foot Gait in Central Neurological Patients: A Mechanical and Functional Evaluation
,”
Prosthet. Orthot. Int.
,
34
(
3
), pp.
293
304
.10.3109/03093646.2010.495969
9.
Gok
,
H.
,
Kucukdeveci
,
A.
,
Altinkaynak
,
H.
,
Yavuzer
,
G.
, and
Ergin
,
S.
,
2003
, “
Effects of Ankle-Foot Orthoses on Hemiparetic Gait
,”
Clin. Rehabil.
,
17
(
2
), pp.
137
139
.10.1191/0269215503cr605oa
10.
Lehmann
,
J. F.
,
Condon
,
S. M.
,
De Lateur
,
B. J.
, and
Price
,
R.
,
1986
, “
Gait Abnormalities in Peroneal Nerve Paralysis and Their Corrections by Orthoses: A Biomechanical Study
,”
Arch. Phys. Med. Rehabil.
,
67
(
6
), pp.
380
386
.
11.
Tyson
,
S. F.
, and
Thornton
,
H. A.
,
2001
, “
The Effect of a Hinged Ankle Foot Orthosis on Hemiplegic Gait: Objective Measures and Users' Opinions
,”
Clin. Rehabil.
,
15
(
1
), pp.
53
58
.10.1191/026921501673858908
12.
Buckon
,
C. E.
,
Thomas
,
S. S.
,
Jakobson-Huston
,
S.
,
Sussman
,
M.
, and
Aiona
,
M.
,
2001
, “
Comparison of Three Ankle-Foot Orthosis Configurations for Children With Spastic Hemiplegia
,”
Dev. Med. Child Neurol.
,
43
(
6
), pp.
371
378
.10.1017/S0012162201000706
13.
Lehmann
,
J. F.
,
Condon
,
S. M.
,
De Lateur
,
B. J.
, and
Smith
,
J. C.
,
1985
, “
Ankle-Foot Orthoses: Effect on Gait Abnormalities in Tibial Nerve Paralysis
,”
Arch. Phys. Med. Rehabil.
,
66
(
4
), pp.
212
218
.10.1016/0003-9993(85)90145-5
14.
De Wit
,
D. C.
,
Buurke
,
J. H.
,
Nijlant
,
J. M.
,
Ijzerman
,
M. J.
, and
Hermens
,
H. J.
,
2004
, “
The Effect of an Ankle-Foot Orthosis on Walking Ability in Chronic Stroke Patients: A Randomized Controlled Trial
,”
Clin. Rehabil.
,
18
(
5
), pp.
550
557
.10.1191/0269215504cr770oa
15.
Ramstrand
,
N.
, and
Ramstrand
,
S.
,
2010
, “
AAOP State-of-the-Science Evidence Report: The Effect of Ankle-Foot Orthoses on Balance—A Systematic Review
,”
J. Prosthet. Orthot.
,
22
, pp.
4
23
.10.1097/JPO.0b013e3181f379b7
16.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
, and
Stanhope
,
S. J.
,
2008
, “
Manufacture of Passive Dynamic Ankle-Foot Orthoses Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
55
(
2 Pt 1
), pp.
784
790
.10.1109/TBME.2007.912638
17.
Danielsson
,
A.
, and
Sunnerhagen
,
K. S.
,
2004
, “
Energy Expenditure in Stroke Subjects Walking With a Carbon Composite Ankle Foot Orthosis
,”
J. Rehabil. Med.
,
36
(
4
), pp.
165
168
.10.1080/16501970410025126
18.
Desloovere
,
K.
,
Molenaers
,
G.
,
Van Gestel
,
L.
,
Huenaerts
,
C.
,
Van Campenhout
,
A.
,
Callewaert
,
B.
,
Van De Walle
,
P.
, and
Seyler
,
J.
,
2006
, “
How Can Push-Off Be Preserved During Use of an Ankle Foot Orthosis in Children With Hemiplegia? A Prospective Controlled Study
,”
Gait Posture
,
24
(
2
), pp.
142
151
.10.1016/j.gaitpost.2006.08.003
19.
Van Gestel
,
L.
,
Molenaers
,
G.
,
Huenaerts
,
C.
,
Seyler
,
J.
, and
Desloovere
,
K.
,
2008
, “
Effect of Dynamic Orthoses on Gait: A Retrospective Control Study in Children With Hemiplegia
,”
Dev. Med. Child Neurol.
,
50
(
1
), pp.
63
67
.10.1111/j.1469-8749.2007.02014.x
20.
Wolf
,
S. I.
,
Alimusaj
,
M.
,
Rettig
,
O.
, and
Doderlein
,
L.
,
2008
, “
Dynamic Assist by Carbon Fiber Spring AFOs for Patients With Myelomeningocele
,”
Gait Posture
,
28
(
1
), pp.
175
177
.10.1016/j.gaitpost.2007.11.012
21.
Bartonek
,
A.
,
Eriksson
,
M.
, and
Gutierrez-Farewik
,
E. M.
,
2007
, “
Effects of Carbon Fibre Spring Orthoses on Gait in Ambulatory Children With Motor Disorders and Plantarflexor Weakness
,”
Dev. Med. Child Neurol.
,
49
(
8
), pp.
615
620
.10.1111/j.1469-8749.2007.00615.x
22.
Schrank
,
E. S.
, and
Stanhope
,
S. J.
,
2011
, “
Dimensional Accuracy of Ankle-Foot Orthoses Constructed by Rapid Customization and Manufacturing Framework
,”
J. Rehabil. Res. Dev.
,
48
(
1
), pp.
31
42
.10.1682/JRRD.2009.12.0195
23.
Creylman
,
V.
,
Muraru
,
L.
,
Pallari
,
J.
,
Vertommen
,
H.
, and
Peeraer
,
L.
,
2013
, “
Gait Assessment During the Initial Fitting of Customized Selective Laser Sintering Ankle Foot Orthoses in Subjects With Drop Foot
,”
Prosthet. Orthot. Int.
,
37
(
2
), pp.
132
138
.10.1177/0309364612451269
24.
Pallari
,
J. H.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
.10.1109/TBME.2010.2044178
25.
Salles
,
A. S.
, and
Gyi
,
D. E.
,
2013
, “
An Evaluation of Personalised Insoles Developed Using Additive Manufacturing
,”
J. Sports Sci.
,
31
(
4
), pp.
442
550
.10.1080/02640414.2012.736629
26.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
,
Rogers
,
W. E.
, and
Bosker
,
G.
,
2006
, “
An Experimental and Theoretical Framework for Manufacturing Prosthetic Sockets for Transtibial Amputees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
304
310
.10.1109/TNSRE.2006.881570
27.
Rogers
,
B.
,
Bosker
,
G.
,
Faustini
,
M.
,
Walden
,
G.
,
Neptune
,
R. R.
, and
Crawford
,
R.
,
2008
, “
Case Report: Variably Compliant Transtibial Prosthetic Socket Fabricated Using Solid Freeform Fabrication
,”
J. Prosthet. Orthot.
,
20
(
1
), pp.
1
7
.10.1097/JPO.0b013e31815ea839
28.
Rogers
,
B.
,
Bosker
,
G. W.
,
Crawford
,
R. H.
,
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Walden
,
G.
, and
Gitter
,
A. J.
,
2007
, “
Advanced Trans-Tibial Socket Fabrication Using Selective Laser Sintering
,”
Prosthet. Orthot. Int.
,
31
(
1
), pp.
88
100
.10.1080/03093640600983923
29.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2011
, “
The Influence of Energy Storage and Return Foot Stiffness on Walking Mechanics and Muscle Activity in Below-Knee Amputees
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
10
), pp.
1025
1032
.10.1016/j.clinbiomech.2011.06.007
30.
Ventura
,
J. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2011
, “
The Effects of Prosthetic Ankle Dorsiflexion and Energy Return on Below-Knee Amputee Leg Loading
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
3
), pp.
298
303
.10.1016/j.clinbiomech.2010.10.003
31.
Ventura
,
J. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2011
, “
The Effect of Prosthetic Ankle Energy Storage and Return Properties on Muscle Activity in Below-Knee Amputee Walking
,”
Gait Posture
,
33
(
2
), pp.
220
226
.10.1016/j.gaitpost.2010.11.009
32.
Geboers
,
J. F.
,
Drost
,
M. R.
,
Spaans
,
F.
,
Kuipers
,
H.
, and
Seelen
,
H. A.
,
2002
, “
Immediate and Long-Term Effects of Ankle-Foot Orthosis on Muscle Activity During Walking: A Randomized Study of Patients With Unilateral Foot Drop
,”
Arch. Phys. Med. Rehabil.
,
83
(
2
), pp.
240
245
.10.1053/apmr.2002.27462
33.
Smith
,
J. D.
, and
Martin
,
P. E.
,
2011
, “
Short and Longer Term Changes in Amputee Walking Patterns Due to Increased Prosthesis Inertia
,”
J. Prosthet. Orthot.
,
23
(
3
), pp.
114
123
.10.1097/JPO.0b013e3182248d90
34.
Vaughan
,
C. L.
, and
O'malley
,
M. J.
,
2005
, “
Froude and the Contribution of Naval Architecture to Our Understanding of Bipedal Locomotion
,”
Gait Posture
,
21
(
3
), pp.
350
362
.10.1016/j.gaitpost.2004.01.011
35.
Wilken
,
J. M.
,
Rodriguez
,
K. M.
,
Brawner
,
M.
, and
Darter
,
B. J.
,
2012
, “
Reliability and Minimal Detectible Change Values for Gait Kinematics and Kinetics in Healthy Adults
,”
Gait Posture
,
35
(
2
), pp.
301
307
.10.1016/j.gaitpost.2011.09.105
36.
Dempster
,
W. T.
,
1955
, “
Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,” Wright-Patterson Air Force Base, Dayton, OH, Technical Report No. 55–159.
37.
Wu
,
G.
, and
Cavanagh
,
P. R.
,
1995
, “
ISB Recommendations for Standardization in the Reporting of Kinematic Data
,”
J. Biomech.
,
28
(
10
), pp.
1257
1261
.10.1016/0021-9290(95)00017-C
38.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
39.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
40.
Baker
,
R.
,
2001
, “
Pelvic Angles: A Mathematically Rigorous Definition Which Is Consistent With a Conventional Clinical Understanding of the Terms
,”
Gait Posture
,
13
(
1
), pp.
1
6
.10.1016/S0966-6362(00)00083-7
41.
Zeni
,
J. A.
, Jr.
,
Richards
,
J. G.
, and
Higginson
,
J. S.
,
2008
, “
Two Simple Methods for Determining Gait Events During Treadmill and Overground Walking Using Kinematic Data
,”
Gait Posture
,
27
(
4
), pp.
710
714
.10.1016/j.gaitpost.2007.07.007
42.
South
,
B. J.
,
Fey
,
N. P.
,
Bosker
,
G.
, and
Neptune
,
R. R.
,
2010
, “
Manufacture of Energy Storage and Return Prosthetic Feet Using Selective Laser Sintering
,”
J. Biomech. Eng.
,
132
(
1
), p.
015001
(1–6).10.1115/1.4000166
You do not currently have access to this content.