Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth “grand challenge competition to predict in vivo knee loads” dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > −0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > −0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design.

References

1.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
An Instrumented Implant for In Vivo Measurement of Contact Forces and Contact Moments in the Shoulder Joint
,”
Med. Eng. Phys.
,
31
(
2
), pp.
207
213
.10.1016/j.medengphy.2008.07.011
2.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kääb
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces-Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.10.1016/j.jbiomech.2006.10.037
3.
D'Lima
,
D. D.
,
Fregly
,
B. J.
,
Patil
,
S.
,
Steklov
,
N.
, and
Colwell
,
C. W.
,
2012
, “
Knee Joint Forces: Prediction, Measurement, and Significance
,”
Proc. Inst. Mech. Eng.
, Part H,
226
(
2
), pp.
95
102
.10.1177/0954411911433372
4.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
5.
Damm
,
P.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Bender
,
A.
, and
Bergmann
,
G.
,
2010
, “
Total Hip Joint Prosthesis for In Vivo Measurement of Forces and Moments
,”
Med. Eng. Phys.
,
32
(
1
), pp.
95
100
.10.1016/j.medengphy.2009.10.003
6.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.10.1016/j.jbiomech.2004.02.011
7.
Bergmann
,
G.
,
2008
, “
Orthoload.com
,” Charité Univ. Berlin, http://www.orthoload.com/?page_id=7
8.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
9.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
10.
Goislard de Monsabert
,
B.
,
Vigouroux
,
L.
,
Bendahan
,
D.
, and
Berton
,
E.
,
2014
, “
Quantification of Finger Joint Loadings Using Musculoskeletal Modelling Clarifies Mechanical Risk Factors of Hand Osteoarthritis
,”
Med. Eng. Phys.
,
36
(
2
), pp.
177
184
.10.1016/j.medengphy.2013.10.007
11.
Mellon
,
S. J.
,
Grammatopoulos
,
G.
,
Andersen
,
M. S.
,
Pegg
,
E. C.
,
Pandit
,
H. G.
,
Murray
,
D. W.
, and
Gill
,
H. S.
,
2013
, “
Individual Motion Patterns During Gait and Sit-to-Stand Contribute to Edge-Loading Risk in Metal-on-Metal Hip Resurfacing
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
7
), pp.
799
810
.10.1177/0954411913483639
12.
Lemieux
,
P.-O.
,
Nuño
,
N.
,
Hagemeister
,
N.
, and
Tétreault
,
P.
,
2012
, “
Mechanical Analysis of Cuff Tear Arthropathy During Multiplanar Elevation With the AnyBody Shoulder Model
,”
Clin. Biomech. (Bristol, Avon)
,
27
(
8
), pp.
801
816
.10.1016/j.clinbiomech.2012.04.008
13.
Lemieux
,
P. O.
,
Tétreault
,
P.
,
Hagemeister
,
N.
, and
Nuño
,
N.
,
2013
, “
Influence of Prosthetic Humeral Head Size and Medial Offset on the Mechanics of the Shoulder With Cuff Tear Arthropathy: A Numerical Study
,”
J. Biomech.
,
46
(
4
), pp.
806
812
.10.1016/j.jbiomech.2012.11.021
14.
Weber
,
T.
,
Dendorfer
,
S.
,
Dullien
,
S.
,
Grifka
,
J.
,
Verkerke
,
G. J.
, and
Renkawitz
,
T.
,
2012
, “
Measuring Functional Outcome After Total Hip Replacement With Subject-Specific Hip Joint Loading
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
12
), pp.
939
946
.10.1177/0954411912447728
15.
Weber
,
T.
,
Al-Munajjed
,
A. A.
,
Verkerke
,
G. J.
,
Dendorfer
,
S.
, and
Renkawitz
,
T.
,
2014
, “
Influence of Minimally Invasive Total Hip Replacement on Hip Reaction Forces and Their Orientations
,”
J. Orthop. Res.
,
32
(
12
), pp.
1680
1687
.10.1002/jor.22710
16.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Xie
,
X.
,
Gramopadhye
,
A. K.
,
Wagner
,
D.
, and
Ozen
,
M.
,
2010
, “
Musculoskeletal Computational Analysis of the Influence of Car-Seat Design/Adjustments on Long-Distance Driving Fatigue
,”
Int. J. Ind. Ergon.
,
40
(
3
), pp.
345
355
.10.1016/j.ergon.2010.01.002
17.
Rasmussen
,
J.
,
Tørholm
,
S.
, and
de Zee
,
M.
,
2009
, “
Computational Analysis of the Influence of Seat Pan Inclination and Friction on Muscle Activity and Spinal Joint Forces
,”
Int. J. Ind. Ergon.
,
39
(
1
), pp.
52
57
.10.1016/j.ergon.2008.07.008
18.
Mirakhorlo
,
M.
,
Azghani
,
M. R.
, and
Kahrizi
,
S.
,
2014
, “
Validation of a Musculoskeletal Model of Lifting and Its Application for Biomechanical Evaluation of Lifting Techniques
,”
J. Res. Health Sci.
,
14
(
1
), pp.
23
28
.
19.
Kinney
,
A. L.
,
Besier
,
T. F.
,
Silder
,
A.
,
Delp
,
S. L.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Changes in In Vivo Knee Contact Forces Through Gait Modification
,”
J. Orthop. Res.
,
31
(
3
), pp.
434
440
.10.1002/jor.22240
20.
Zelle
,
J.
,
Heesterbeek
,
P. J. C.
,
De Waal Malefijt
,
M.
, and
Verdonschot
,
N.
,
2010
, “
Numerical Analysis of Variations in Posterior Cruciate Ligament Properties and Balancing Techniques on Total Knee Arthroplasty Loading
,”
Med. Eng. Phys.
,
32
(
7
), pp.
700
707
.10.1016/j.medengphy.2010.04.013
21.
Mootanah
,
R.
,
Imhauser
,
C. W.
,
Reisse
,
F.
,
Carpanen
,
D.
,
Walker
,
R. W.
,
Koff
,
M. F.
,
Lenhoff
,
M. W.
,
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
,
Dewan
,
Z.
,
Kirane
,
Y. M.
,
Cheah
,
K.
,
Dowell
,
J. K.
, and
Hillstrom
,
H. J.
,
2014
, “
Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
13
), pp.
1502
1517
.10.1080/10255842.2014.899588
22.
Van Duren
,
B.
,
Pandit
,
H.
,
Murray
,
D.
, and
Gill
,
H.
,
2014
, “
Approximation of the Functional Kinematics of Posterior Stabilised Total Knee Replacements Using a Two-Dimensional Sagittal Plane Patello-Femoral Model: Comparing Model Approximation to In Vivo Measurement
,”
Comput. Methods Biomech. Biomed. Eng.
(in press).
23.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng. Part H
,
226
(
2
), pp.
82
94
.10.1177/0954411911431516
24.
Roberts
,
T. J.
, and
Gabaldón
,
A. M.
,
2008
, “
Interpreting Muscle Function From EMG: Lessons Learned From Direct Measurements of Muscle Force
,”
Integr. Comp. Biol.
,
48
(
2
), pp.
312
320
.10.1093/icb/icn056
25.
Meyer
,
A. J.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2013
, “
Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces During Gait?
,”
J. Orthop. Res.
,
31
(
6
), pp.
921
929
.10.1002/jor.22304
26.
Herzog
,
W.
,
Longino
,
D.
, and
Clark
,
A.
,
2003
, “
The Role of Muscles in Joint Adaptation and Degeneration
,”
Langenbecks Arch. Surg.
,
388
(
5
), pp.
305
315
.10.1007/s00423-003-0402-6
27.
Thelen
,
D. G.
,
Choi
,
K. W.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.10.1115/1.4026358
28.
Guess
,
T. M.
,
Stylianou
,
A. P.
, and
Kia
,
M.
,
2014
, “
Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021032
.10.1115/1.4026359
29.
Kia
,
M.
,
Stylianou
,
A. P.
, and
Guess
,
T. M.
,
2014
, “
Evaluation of a Musculoskeletal Model With Prosthetic Knee Through Six Experimental Gait Trials
,”
Med. Eng. Phys.
,
36
(
3
), pp.
335
344
.10.1016/j.medengphy.2013.12.007
30.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2013
, “
Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021013
.10.1115/1.4023320
31.
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2011
, “
Total Knee Replacement Musculoskeletal Model Using a Novel Simulation Method for Non-Conforming Joints
,”
Proceedings of the International Society of Biomechanics Conference
, International Society of Biomechanics, ISB, Brussels.
32.
Pellikaan
,
P.
,
van der Krogt
,
M.
,
Carbone
,
V.
,
Verdonschot
,
N.
, and
Koopman
,
B.
,
2012
, “
Are Muscle Volumes Linearly Scalable in Musculoskeletal Models?
,”
J. Biomech.
,
45
(
1
), p.
S498
.10.1016/S0021-9290(12)70499-2
33.
Carbone
,
V.
,
van der Krogt
,
M.
,
Koopman
,
B.
, and
Verdonschot
,
N.
,
2012
, “
Functional Scaling of Subject-Specific Musculo-Tendon Parameters in the Lower Extremity
,”
J. Biomech.
,
45
(
1
), p.
S492
.10.1016/S0021-9290(12)70493-1
34.
Redert
,
A.
,
Kaptein
,
B.
,
Reinders
,
M.
,
van den Eelaart
,
I.
, and
Hendriks
,
E.
,
1999
, “
Extraction of Semantic 3D Models of Human Faces From Stereoscopic Image Sequences
,”
Acta Stereol.
,
18
, pp.
255
264
.
35.
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Carbone
,
V.
,
Fluit
,
R.
,
Vigneron
,
L. M.
,
Van Deun
,
J.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Evaluation of a Morphing Based Method to Estimate Muscle Attachment Sites of the Lower Extremity
,”
J. Biomech.
,
47
(
5
), pp.
1144
1150
.10.1016/j.jbiomech.2013.12.010
36.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
,
C. W.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.10.1016/j.jbiomech.2005.05.023
37.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the Anybody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
38.
Carbone
,
V.
,
Fluit
,
R.
,
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Janssen
,
D.
,
Damsgaard
,
M.
,
Vigneron
,
L.
,
Feilkas
,
T.
,
Koopman
,
H. F. J. M.
, and
Verdonschot
,
N.
,
2014
, “
tlem 2.0—A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity
,”
J. Biomech.
(accepted).
39.
Parra
,
W. C. H.
,
Chatterjee
,
H. J.
, and
Soligo
,
C.
,
2012
, “
Calculating the Axes of Rotation for the Subtalar and Talocrural Joints Using 3D Bone Reconstructions
,”
J. Biomech.
,
45
(
6
), pp.
1103
1107
.10.1016/j.jbiomech.2012.01.011
40.
Rasmussen
,
J.
,
Zee
,
M. de
,
Damsgaard
,
M.
,
Christensen
,
S. T.
,
Marek
,
C.
, and
Siebertz
,
K.
,
2005
, “
A General Method for Scaling Musculo-Skeletal Models
,” 2005
International Symposium on Computer Simulation in Biomechanics
, Cleveland, OH.
41.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.10.1080/10255840903067080
42.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
43.
Silva
,
M.
,
Shepherd
,
E. F.
,
Jackson
,
W. O.
,
Pratt
,
J. A.
,
McClung
,
C. D.
, and
Schmalzried
,
T. P.
,
2003
, “
Knee Strength After Total Knee Arthroplasty
,”
J. Arthroplasty
,
18
(
5
), pp.
605
611
.10.1016/S0883-5403(03)00191-8
44.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.10.1016/S0021-9290(00)00191-3
45.
Holmberg
,
L. J.
, and
Klarbring
,
A.
,
2011
, “
Muscle Decomposition and Recruitment Criteria Influence Muscle Force Estimates
,”
Multibody Syst. Dyn.
,
28
(
3
), pp.
283
289
.10.1007/s11044-011-9277-4
46.
Happee
,
R.
, and
Van Der Helm
,
F. C. T.
,
1995
, “
The Control of Shoulder Muscles During Goal Directed Movements, an Inverse Dynamic Analysis
,”
J. Biomech.
,
28
(
10
), pp.
1179
1191
.10.1016/0021-9290(94)00181-3
47.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.10.1080/10255840802459412
48.
Benoit
,
D. L.
,
Ramsey
,
D. K.
,
Lamontagne
,
M.
,
Xu
,
L.
,
Wretenberg
,
P.
, and
Renström
,
P.
,
2006
, “
Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured In Vivo
,”
Gait Posture
,
24
(
2
), pp.
152
164
.10.1016/j.gaitpost.2005.04.012
49.
Andersen
,
M. S.
,
Benoit
,
D. L.
,
Damsgaard
,
M.
,
Ramsey
,
D. K.
, and
Rasmussen
,
J.
,
2010
, “
Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? an In Vivo Study of Knee Kinematics
,”
J. Biomech.
,
43
(
2
), pp.
268
273
.10.1016/j.jbiomech.2009.08.034
50.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2011
, “
Force-Dependent Kinematics: A New Analysis Method for Non-Conforming Joints
,”
XIII International Symposium on Computer Simulation in Biomechanics
, Leuven, Belgium.
51.
Bowman
,
K. F.
, and
Sekiya
,
J. K.
,
2010
, “
Anatomy and Biomechanics of the Posterior Cruciate Ligament, Medial and Lateral Sides of the Knee
,”
Sports Med. Arthrosc.
,
18
(
4
), pp.
222
229
.10.1097/JSA.0b013e3181f917e2
52.
Chwaluk
,
A.
, and
Ciszek
,
B.
,
2009
, “
Anatomy of the Posterior Cruciate Ligament
,”
Folia Morphol. (Warsaw)
,
68
(
1
), pp.
8
12
.
53.
Starok
,
M.
,
Lenchik
,
L.
,
Trudell
,
D.
, and
Resnick
,
D.
,
1997
, “
Normal Patellar Retinaculum: MR and Sonographic Imaging With Cadaveric Correlation
,”
AJR, Am. J. Roentgenol.
,
168
(
6
), pp.
1493
1499
.10.2214/ajr.168.6.9168713
54.
Baldwin
,
J. L.
,
2009
, “
The Anatomy of the Medial Patellofemoral Ligament
,”
Am. J. Sports Med.
,
37
(
12
), pp.
2355
2361
.10.1177/0363546509339909
55.
Desio
,
S. M.
,
Burks
,
R. T.
, and
Bachus
,
K. N.
,
1998
, “
Soft Tissue Restraints to Lateral Patellar Translation in the Human Knee
,”
Am. J. Sports Med.
,
26
(
1
), pp.
59
65
.
56.
Dopirak
,
R. M.
,
Steensen
,
R. N.
, and
Maurus
,
P. B.
,
2008
, “
The Medial Patellofemoral Ligament
,”
Orthopedics
,
31
(
4
), pp.
331
338
.10.3928/01477447-20080401-07
57.
Philippot
,
R.
,
Boyer
,
B.
,
Testa
,
R.
,
Farizon
,
F.
, and
Moyen
,
B.
,
2012
, “
The Role of the Medial Ligamentous Structures on Patellar Tracking During Knee Flexion
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
20
(
2
), pp.
331
336
.10.1007/s00167-011-1598-6
58.
Heegaard
,
J.
,
Leyvraz
,
P. F.
,
Van Kampen
,
A.
,
Rakotomanana
,
L.
,
Rubin
,
P. J.
, and
Blankevoort
,
L.
,
1994
, “
Influence of Soft Structures on Patellar Three-Dimensional Tracking
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
235
243
.10.1097/00003086-199402000-00033
59.
Nomura
,
E.
,
Horiuchi
,
Y.
, and
Kihara
,
M.
,
2000
, “
Medial Patellofemoral Ligament Restraint in Lateral Patellar Translation and Reconstruction
,”
Knee
,
7
(
2
), pp.
121
127
.10.1016/S0968-0160(00)00038-7
60.
Amis
,
A. A.
,
Firer
,
P.
,
Mountney
,
J.
,
Senavongse
,
W.
, and
Thomas
,
N. P.
,
2003
, “
Anatomy and Biomechanics of the Medial Patellofemoral Ligament
,”
Knee
,
10
(
3
), pp.
215
220
.10.1016/S0968-0160(03)00006-1
61.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
62.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
63.
Conlan
,
T.
,
Garth
,
W. P.
, and
Lemons
,
J. E.
,
1993
, “
Evaluation of the Medial Soft-Tissue Restraints of the Extensor Mechanism of the Knee
,”
J. Bone Jt. Surg. Am.
,
75
, pp.
682
693
.
64.
Sprague
,
M. A.
, and
Geers
,
T. L.
,
2003
, “
Spectral Elements and Field Separation for an Acoustic Fluid Subject to Cavitation
,”
J. Comput. Phys.
,
184
(
1
), pp.
149
162
.10.1016/S0021-9991(02)00024-4
65.
Schwer
,
L. E.
,
2007
, “
Validation Metrics for Response Histories: Perspectives and Case Studies
,”
Eng. Comput.
,
23
(
4
), pp.
295
309
.10.1007/s00366-007-0070-1
66.
Chen
,
Z.
,
Zhang
,
X.
,
Ardestani
,
M. M.
,
Wang
,
L.
,
Liu
,
Y.
,
Lian
,
Q.
,
He
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2014
, “
Prediction of In Vivo Joint Mechanics of an Artificial Knee Implant Using Rigid Multi-Body Dynamics With Elastic Contacts
,”
Proc. Inst. Mech. Eng. Part H
,
228
(
6
), pp.
564
575
.10.1177/0954411914537476
67.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
68.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2003
, “
Individual Muscle Contributions to Support in Normal Walking
,”
Gait Posture
,
17
(
2
), pp.
159
169
.10.1016/S0966-6362(02)00073-5
69.
Li
,
G.
,
Zayontz
,
S.
,
Most
,
E.
,
Otterberg
,
E.
,
Sabbag
,
K.
, and
Rubash
,
H. E.
,
2001
, “
Cruciate-Retaining and Cruciate-Substituting Total Knee Arthroplasty: An In Vitro Comparison of the Kinematics Under Muscle Loads
,”
J. Arthroplasty
,
16
(
8
), pp.
150
156
.10.1054/arth.2001.28367
70.
Lin
,
Y.-C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.10.1016/j.jbiomech.2009.10.048
71.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
72.
Martelli
,
S.
,
Valente
,
G.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Sensitivity of a Subject-Specific Musculoskeletal Model to the Uncertainties on the Joint Axes Location
,”
Comput. Methods Biomech. Biomed. Eng.
, pp.
1
9
.10.1080/10255842.2014.930134
73.
Correa
,
T. A.
, and
Pandy
,
M. G.
,
2011
, “
A Mass-Length Scaling Law for Modeling Muscle Strength in the Lower Limb
,”
J. Biomech.
,
44
(
16
), pp.
2782
2789
.10.1016/j.jbiomech.2011.08.024
74.
Lin
,
Y.-C.
,
Haftka
,
R. T.
,
Queipo
,
N. V.
, and
Fregly
,
B. J.
,
2010
, “
Surrogate Articular Contact Models for Computationally Efficient Multibody Dynamic Simulations
,”
Med. Eng. Phys.
,
32
(
6
), pp.
584
594
.10.1016/j.medengphy.2010.02.008
75.
Sheehan
,
F. T.
, and
Drace
,
J. E.
,
2000
, “
Human Patellar Tendon Strain. A Noninvasive, In Vivo Study
,”
Clin. Orthop. Relat. Res.
,
370
, pp.
201
217
.10.1097/00003086-200001000-00019
76.
Athwal
,
K. K.
,
Hunt
,
N. C.
,
Davies
,
A. J.
,
Deehan
,
D. J.
, and
Amis
,
A. A.
,
2014
, “
Clinical Biomechanics of Instability Related to Total Knee Arthroplasty
,”
Clin. Biomech. (Bristol, Avon)
,
29
(
2
), pp.
119
128
.10.1016/j.clinbiomech.2013.11.004
77.
Hughes
,
R.
,
Bean
,
J.
, and
Chaffin
,
D.
,
1995
, “
Evaluating the Effect of Co-Contraction in Optimization Models
,”
J. Biomech.
,
2
(
7
), pp.
875
878
.10.1016/0021-9290(95)95277-C
You do not currently have access to this content.