Pulmonary arteries (PAs) distend to accommodate increases in cardiac output. PA distensibility protects the right ventricle (RV) from excessive increases in pressure. Loss of PA distensibility plays a critical role in the fatal progression of pulmonary arterial hypertension (PAH) toward RV failure. However, it is unclear how PA distensibility is distributed across the generations of PA branches, mainly because of the lack of appropriate in vivo methods to measure distensibility of vessels other than the large, conduit PAs. In this study, we propose a novel approach to assess the distensibility of individual PA branches. The metric of PA distensibility we used is the slope of the stretch ratio–pressure relationship. To measure distensibility, we combined invasive measurements of mean PA pressure with angiographic imaging of the PA network of six healthy female dogs. Stacks of 2D images of the PAs, obtained from either contrast enhanced magnetic resonance angiography (CE-MRA) or computed tomography digital subtraction angiography (CT-DSA), were used to reconstruct 3D surface models of the PA network, from the first bifurcation down to the sixth generation of branches. For each branch of the PA, we calculated radial and longitudinal stretch between baseline and a pressurized state obtained via acute embolization of the pulmonary vasculature. Our results indicated that large and intermediate PA branches have a radial distensibility consistently close to 2%/mmHg. Our axial distensibility data, albeit affected by larger variability, suggested that the PAs distal to the first generation may not significantly elongate in vivo, presumably due to spatial constraints. Results from both angiographic techniques were comparable to data from established phase-contrast (PC) magnetic resonance imaging (MRI) and ex vivo mechanical tests, which can only be used in the first branch generation. Our novel method can be used to characterize PA distensibility in PAH patients undergoing clinical right heart catheterization (RHC) in combination with MRI.

References

1.
Hunter
,
K. S.
,
Lee
,
P.-F.
,
Lanning
,
C. J.
,
Ivy
,
D. D.
,
Kirby
,
K. S.
,
Claussen
,
L. R.
,
Chan
,
K. C.
, and
Shandas
,
R.
,
2008
, “
Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better Than Pulmonary Vascular Resistance Alone in Pediatric Patients With Pulmonary Hypertension
,”
Am. Heart J.
,
155
(
1
), pp.
166
174
.10.1016/j.ahj.2007.08.014
2.
Mahapatra
,
S.
,
Nishimura
,
R. A.
,
Sorajja
,
P.
,
Cha
,
S.
, and
McGoon
,
M. D.
,
2006
, “
Relationship of Pulmonary Arterial Capacitance and Mortality in Idiopathic Pulmonary Arterial Hypertension
,”
J. Am. Coll. Cardiol.
,
47
(
4
), pp.
799
803
.10.1016/j.jacc.2005.09.054
3.
Ooi
,
C. Y.
,
Wang
,
Z.
,
Tabima
,
D. M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2010
, “
The Role of Collagen in Extralobar Pulmonary Artery Stiffening in Response to Hypoxia-Induced Pulmonary Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H1823
H1831
.10.1152/ajpheart.00493.2009
4.
Gan
,
C. T.-J.
,
Lankhaar
,
J.-W.
,
Westerhof
,
N.
,
Marcus
,
J. T.
,
Becker
,
A.
,
Twisk
,
J. W. R.
,
Boonstra
,
A.
,
Postmus
,
P. E.
, and
Vonk-Noordegraaf
,
A.
,
2007
, “
Noninvasively Assessed Pulmonary Artery Stiffness Predicts Mortality in Pulmonary Arterial Hypertension
,”
Chest
,
132
(
6
), pp.
1906
1912
.10.1378/chest.07-1246
5.
Sanz
,
J.
,
Kariisa
,
M.
,
Dellegrottaglie
,
S.
,
Prat-González
,
S.
,
Garcia
,
M. J.
,
Fuster
,
V.
, and
Rajagopalan
,
S.
,
2009
, “
Evaluation of Pulmonary Artery Stiffness in Pulmonary Hypertension With Cardiac Magnetic Resonance
,”
JACC Cardiovasc. Imaging
,
2
(
3
), pp.
286
295
.10.1016/j.jcmg.2008.08.007
6.
D'Alonzo
,
G. E.
,
Barst
,
R. J.
,
Ayres
,
S. M.
,
Bergofsky
,
E. H.
,
Brundage
,
B. H.
,
Detre
,
K. M.
,
Fishman
,
A. P.
,
Goldring
,
R. M.
,
Groves
,
B. M.
, and
Kernis
,
J. T.
,
1991
, “
Survival in Patients With Primary Pulmonary Hypertension. Results From a National Prospective Registry
,”
Ann. Intern. Med.
,
115
(
5
), pp.
343
349
.10.7326/0003-4819-115-5-343
7.
Dodson
,
R. B.
,
Morgan
,
M.
,
Galambos
,
C.
,
Hunter
,
K. S.
, and
Abman
,
S. H.
,
2014
, “
Chronic Intrauterine Pulmonary Hypertension Increases Main Pulmonary Artery Stiffness and Adventitial Remodeling in Fetal Sheep
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
307
(
11
), pp.
L822
L828
.10.1152/ajplung.00256.2014
8.
Swift
,
A. J.
,
Rajaram
,
S.
,
Condliffe
,
R.
,
Capener
,
D.
,
Hurdman
,
J.
,
Elliot
,
C.
,
Kiely
,
D. G.
, and
Wild
,
J. M.
,
2012
, “
Pulmonary Artery Relative Area Change Detects Mild Elevations in Pulmonary Vascular Resistance and Predicts Adverse Outcome in Pulmonary Hypertension
,”
Invest. Radiol.
,
47
(
10
), pp.
571
577
.10.1097/RLI.0b013e31826c4341
9.
Su
,
Z.
,
Tan
,
W.
,
Shandas
,
R.
, and
Hunter
,
K. S.
,
2013
, “
Influence of Distal Resistance and Proximal Stiffness on Hemodynamics and RV Afterload in Progression and Treatments of Pulmonary Hypertension: A Computational Study With Validation Using Animal Models
,”
Comput. Math. Methods Med.
,
2013
, p.
618326
.10.1155/2013/618326
10.
Su
,
Z.
,
Hunter
,
K. S.
, and
Shandas
,
R.
,
2012
, “
Impact of Pulmonary Vascular Stiffness and Vasodilator Treatment in Pediatric Pulmonary Hypertension: 21 Patient-Specific Fluid–Structure Interaction Studies
,”
Comput. Methods Programs Biomed.
,
108
(
2
), pp.
617
628
.10.1016/j.cmpb.2011.09.002
11.
Saouti
,
N.
,
Westerhof
,
N.
,
Helderman
,
F.
,
Marcus
,
J. T.
,
Stergiopulos
,
N.
,
Westerhof
,
B. E.
,
Boonstra
,
A.
,
Postmus
,
P. E.
, and
Vonk-Noordegraaf
,
A.
,
2009
, “
RC Time Constant of Single Lung Equals That of Both Lungs Together: A Study in Chronic Thromboembolic Pulmonary Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
6
), pp.
H2154
H2160
.10.1152/ajpheart.00694.2009
12.
Linehan
,
J. H.
,
Haworth
,
S. T.
,
Nelin
,
L. D.
,
Krenz
,
G. S.
, and
Dawson
,
C. A.
,
1992
, “
A Simple Distensible Vessel Model for Interpreting Pulmonary Vascular Pressure-Flow Curves
,”
J. Appl. Physiol.
,
73
(
3
), pp.
987
994
.
13.
Blyth
,
K. G.
,
Syyed
,
R.
,
Chalmers
,
J.
,
Foster
,
J. E.
,
Saba
,
T.
,
Naeije
,
R.
,
Melot
,
C.
, and
Peacock
,
A. J.
,
2007
, “
Pulmonary Arterial Pulse Pressure and Mortality in Pulmonary Arterial Hypertension
,”
Respir. Med.
,
101
(
12
), pp.
2495
2501
.10.1016/j.rmed.2007.07.004
14.
Argiento
,
P.
,
Chesler
,
N.
,
Mulè
,
M.
,
D'Alto
,
M.
,
Bossone
,
E.
,
Unger
,
P.
, and
Naeije
,
R.
,
2010
, “
Exercise Stress Echocardiography for the Study of the Pulmonary Circulation
,”
Eur. Respir. J.
,
35
(
6
), pp.
1273
1278
.10.1183/09031936.00076009
15.
Vanderpool
,
R. R.
,
Kim
,
A. R.
,
Molthen
,
R.
, and
Chesler
,
N. C.
,
2011
, “
Effects of Acute Rho Kinase Inhibition on Chronic Hypoxia-Induced Changes in Proximal and Distal Pulmonary Arterial Structure and Function
,”
J. Appl. Physiol.
,
110
(
1
), pp.
188
198
.10.1152/japplphysiol.00533.2010
16.
Reeves
,
J. T.
,
Linehan
,
J. H.
, and
Stenmark
,
K. R.
,
2005
, “
Distensibility of the Normal Human Lung Circulation During Exercise
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
288
(
3
), pp.
L419
L425
.10.1152/ajplung.00162.2004
17.
Krenz
,
G. S.
, and
Dawson
,
C. A.
,
2003
, “
Flow and Pressure Distributions in Vascular Networks Consisting of Distensible Vessels
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
(
6
), pp.
H2192
H2203
.10.1152/ajpheart.00762.2002
18.
Scott-Drechsel
,
D.
,
Su
,
Z.
,
Hunter
,
K.
,
Li
,
M.
,
Shandas
,
R.
, and
Tan
,
W.
,
2012
, “
A New Flow Co-Culture System for Studying Mechanobiology Effects of Pulse Flow Waves
,”
Cytotechnology
,
64
(
6
), pp.
649
666
.10.1007/s10616-012-9445-2
19.
Morrell
,
N. W.
,
2006
, “
Pulmonary Hypertension Due to BMPR2 Mutation: A New Paradigm for Tissue Remodeling?
,”
Proc. Am. Thorac. Soc.
,
3
(
8
), pp.
680
686
.10.1513/pats.200605-118SF
20.
Pavelescu
,
A.
,
Vanderpool
,
R.
,
Vachiéry
,
J.-L.
,
Grunig
,
E.
, and
Naeije
,
R.
,
2012
, “
Echocardiography of Pulmonary Vascular Function in Asymptomatic Carriers of BMPR2 Mutations
,”
Eur. Respir. J.
,
40
(
5
), pp.
1287
1289
.10.1183/09031936.00021712
21.
Naeije
,
R.
,
2013
, “
Physiology of the Pulmonary Circulation and the Right Heart
,”
Curr. Hypertens. Rep.
,
15
(
6
), pp.
623
631
.10.1007/s11906-013-0396-6
22.
Bellofiore
,
A.
,
Roldán-Alzate
,
A.
,
Besse
,
M.
,
Kellihan
,
H. B.
,
Consigny
,
D. W.
,
Francois
,
C. J.
, and
Chesler
,
N. C.
,
2013
, “
Impact of Acute Pulmonary Embolization on Arterial Stiffening and Right Ventricular Function in Dogs
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
195
204
.10.1007/s10439-012-0635-z
23.
Kalender
,
W. A.
, and
Kyriakou
,
Y.
,
2007
, “
Flat-Detector Computed Tomography (FD-CT)
,”
Eur. Radiol.
,
17
(
11
), pp.
2767
2779
.10.1007/s00330-007-0651-9
24.
Kamran
,
M.
,
Nagaraja
,
S.
, and
Byrne
,
J. V.
,
2010
, “
C-Arm Flat Detector Computed Tomography: The Technique and Its Applications in Interventional Neuro-Radiology
,”
Neuroradiology
,
52
(
4
), pp.
319
327
.10.1007/s00234-009-0609-5
25.
Raman
,
S. V.
,
Tran
,
T.
,
Simonetti
,
O. P.
, and
Sun
,
B.
,
2009
, “
Dynamic Computed Tomography to Determine Cardiac Output in Patients With Left Ventricular Assist Devices
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
5
), pp.
1213
1217
.10.1016/j.jtcvs.2008.10.043
26.
Rogers
,
T.
,
Ratnayaka
,
K.
, and
Lederman
,
R. J.
,
2014
, “
MRI Catheterization in Cardiopulmonary Disease
,”
Chest
,
145
(
1
), pp.
30
36
.10.1378/chest.13-1759
27.
Ratnayaka
,
K.
,
Faranesh
,
A. Z.
,
Hansen
,
M. S.
,
Stine
,
A. M.
,
Halabi
,
M.
,
Barbash
,
I. M.
,
Schenke
,
W. H.
,
Wright
,
V. J.
,
Grant
,
L. P.
,
Kellman
,
P.
,
Kocaturk
,
O.
, and
Lederman
,
R. J.
,
2013
, “
Real-Time MRI-Guided Right Heart Catheterization in Adults Using Passive Catheters
,”
Eur. Heart J.
,
34
(
5
), pp.
380
389
.10.1093/eurheartj/ehs189
28.
Muthurangu
,
V.
,
Atkinson
,
D.
,
Sermesant
,
M.
,
Miquel
,
M. E.
,
Hegde
,
S.
,
Johnson
,
R.
,
Andriantsimiavona
,
R.
,
Taylor
,
A. M.
,
Baker
,
E.
,
Tulloh
,
R.
,
Hill
,
D.
, and
Razavi
,
R. S.
,
2005
, “
Measurement of Total Pulmonary Arterial Compliance Using Invasive Pressure Monitoring and MR Flow Quantification During MR-Guided Cardiac Catheterization
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
3
), pp.
H1301
H1306
.10.1152/ajpheart.00957.2004
29.
Kuehne
,
T.
,
Yilmaz
,
S.
,
Steendijk
,
P.
,
Moore
,
P.
,
Groenink
,
M.
,
Saaed
,
M.
,
Weber
,
O.
,
Higgins
,
C. B.
,
Ewert
,
P.
,
Fleck
,
E.
,
Nagel
,
E.
,
Schulze-Neick
,
I.
, and
Lange
,
P.
,
2004
, “
Magnetic Resonance Imaging Analysis of Right Ventricular Pressure–Volume Loops
,”
Circulation
,
110
(
14
), pp.
2010
2016
.10.1161/01.CIR.0000143138.02493.DD
30.
Naeije
,
R.
, and
Chesler
,
N.
,
2012
, “
Pulmonary Circulation at Exercise
,”
Compr. Physiol.
,
2
(
1
), pp.
711
741
.10.1002/cphy.c100091
31.
Graham
,
R.
,
Skoog
,
C.
,
Macedo
,
W.
,
Carter
,
J.
,
Oppenheimer
,
L.
,
Rabson
,
J.
, and
Goldberg
,
H. S.
,
1983
, “
Dopamine, Dobutamine, and Phentolamine Effects on Pulmonary Vascular Mechanics
,”
J. Appl. Physiol.
,
54
(
5
), pp.
1277
1283
.
32.
Borlaug
,
B. A.
,
Melenovsky
,
V.
,
Marhin
,
T.
,
Fitzgerald
,
P.
, and
Kass
,
D. A.
,
2005
, “
Sildenafil Inhibits Beta-Adrenergic-Stimulated Cardiac Contractility in Humans
,”
Circulation
,
112
(
17
), pp.
2642
2649
.10.1161/CIRCULATIONAHA.105.540500
33.
Argiento
,
P.
,
Vanderpool
,
R. R.
,
Mule
,
M.
,
Russo
,
M. G.
,
D'Alto
,
M.
,
Bossone
,
E.
,
Chesler
,
N. C.
, and
Naeije
,
R.
,
2012
, “
Exercise Stress Echocardiography of the Pulmonary Circulation: Limits of Normal and Gender Differences
,”
Chest
,
142
(
5
), pp.
1158
1165
.10.1378/chest.12-0071
34.
Tian
,
L.
, and
Chesler
,
N. C.
,
2012
, “
In Vivo and In Vitro Measurements of Pulmonary Arterial Stiffness: A Brief Review
,”
Pulm. Circ.
,
2
(
4
), pp.
505
517
.10.4103/2045-8932.105040
You do not currently have access to this content.