The meniscus provides crucial knee function and damage to it leads to osteoarthritis of the articular cartilage. Accurate measurement of its mechanical properties is therefore important, but there is uncertainty about how the test procedure affects the results, and some key mechanical properties are reported using ad hoc criteria (modulus) or not reported at all (yield). This study quantifies the meniscus' stress–strain curve in circumferential and radial uniaxial tension. A fiber recruitment model was used to represent the toe region of the stress–strain curve, and new reproducible and objective procedures were implemented for identifying the yield point and measuring the elastic modulus. Patterns of strain heterogeneity were identified using strain field measurements. To resolve uncertainty regarding whether rupture location (i.e., midsubstance rupture versus at-grip rupture) influences the measured mechanical properties, types of rupture were classified in detail and compared. Dogbone (DB)-shaped specimens are often used to promote midsubstance rupture; to determine if this is effective, we compared DB and rectangle (R) specimens in both the radial and circumferential directions. In circumferential testing, we also compared expanded tab (ET) specimens under the hypothesis that this shape would more effectively secure the meniscus' curved fibers and thus produce a stiffer response. The fiber recruitment model produced excellent fits to the data. Full fiber recruitment occurred approximately at the yield point, strongly supporting the model's physical interpretation. The strain fields, especially shear and transverse strain, were extremely heterogeneous. The shear strain field was arranged in pronounced bands of alternating positive and negative strain in a pattern similar to the fascicle structure. The site and extent of failure showed great variation, but did not affect the measured mechanical properties. In circumferential tension, ET specimens underwent earlier and more rapid fiber recruitment, had less stretch at yield, and had greater elastic modulus and peak stress. No significant differences were observed between R and DB specimens in either circumferential or radial tension. Based on these results, ET specimens are recommended for circumferential tests and R specimens for radial tests. In addition to the data obtained, the procedural and modeling advances made in this study are a significant step forward for meniscus research and are applicable to other fibrous soft tissues.

References

1.
Stapleton
,
T. W.
,
Ingram
,
J.
,
Katta
,
J.
,
Knight
,
R.
,
Korossis
,
S.
,
Fisher
,
J.
, and
Ingham
,
E.
,
2008
, “
Development and Characterization of an Acellular Porcine Medial Meniscus for Use in Tissue Engineering
,”
Tissue Eng., Part A
,
14
(
4
), pp.
505
518
.
2.
Rodkey
,
W. G.
,
Steadman
,
J. R.
, and
Li
,
S. T.
,
1999
, “
A Clinical Study of Collagen Meniscus Implants to Restore the Injured Meniscus
,”
Clin. Orthop. Relat. Res.
,
367S
, pp.
S281
S292
.
3.
Nerurkar
,
N. L.
,
Han
,
W.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2011
, “
Homologous Structure-Function Relationships Between Native Fibrocartilage and Tissue Engineered From MSC-Seeded Nanofibrous Scaffolds
,”
Biomaterials
,
32
(
2
), pp.
461
468
.
4.
Fisher
,
M. B.
,
Henning
,
E. A.
,
Söegaard
,
N.
,
Bostrom
,
M.
,
Esterhai
,
J. L.
, and
Mauck
,
R. L.
,
2015
, “
Engineering Meniscus Structure and Function Via Multi-Layered Mesenchymal Stem Cell-Seeded Nanofibrous Scaffolds
,”
J. Biomech.
,
48
(
8
), pp.
1412
1419
.
5.
Mauck
,
R. L.
, and
Burdick
,
J. A.
,
2015
, “
From Repair to Regeneration: Biomaterials to Reprogram the Meniscus Wound Microenvironment
,”
Ann. Biomed. Eng.
,
43
(
3
), pp.
529
542
.
6.
Mow
,
V. C.
,
Gu
,
W. Y.
, and
Chen
,
F. H.
,
2005
, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics & Mechano-Biology
,
3rd ed.
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
, pp.
181
258
.
7.
Stabile
,
K. J.
,
Odom
,
D.
,
Smith
,
T. L.
,
Northam
,
C.
,
Whitlock
,
P. W.
,
Smith
,
B. P.
,
Van Dyke
,
M. E.
, and
Ferguson
,
C. M.
,
2010
, “
An Acellular, Allograft-Derived Meniscus Scaffold in an Ovine Model
,”
Arthroscopy
,
26
(
7
), pp.
936
948
.
8.
Upton
,
M. L.
,
Guilak
,
F.
,
Laursen
,
T. A.
, and
Setton
,
L. A.
,
2006
, “
Finite Element Modeling Predictions of Region-Specific Cell-Matrix Mechanics in the Meniscus
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
140
149
.
9.
Párraga Quiroga
,
J. M.
,
Emans
,
P.
,
Wilson
,
W.
,
Ito
,
K.
, and
van Donkelaar
,
C. C.
,
2014
, “
Should a Native Depth-Dependent Distribution of Human Meniscus Constitutive Components be Considered in FEA-Models of the Knee Joint?
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
242
250
.
10.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.
11.
Szczesny
,
S. E.
,
Peloquin
,
J. M.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
,
2012
, “
Biaxial Tensile Testing and Constitutive Modeling of Human Supraspinatus Tendon
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021004
.
12.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Tensile and Compressive Properties of the Medial Rabbit Meniscus
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
5
), pp.
337
347
.
13.
Kelly
,
M. A.
,
Fithian
,
D. C.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
,
1990
, “
Structure and Function of the Meniscus: Basic and Clinical Implications
,”
Biomechanics of Diarthrodial Joints
,
A.
Ratcliffe
,
S. L.
Woo
, and
V. C.
Mow
, eds.,
Springer
,
New York
, pp.
191
211
.
14.
Bullough
,
P. G.
,
Munuera
,
L.
,
Murphy
,
J.
, and
Weinstein
,
A. M.
,
1970
, “
The Strength of the Menisci of the Knee as It Relates to Their Fine Structure
,”
J. Bone Jt. Surg., Br.
52
(
3
), pp.
564
567
.
15.
Lechner
,
K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2000
, “
Is the Circumferential Tensile Modulus Within a Human Medial Meniscus Affected by the Test Sample Location and Cross-Sectional Area?
J. Orthop. Res.
,
18
(
6
), pp.
945
951
.
16.
Bursac
,
P.
,
York
,
A.
,
Kuznia
,
P.
,
Brown
,
L. M.
, and
Arnoczky
,
S. P.
,
2009
, “
Influence of Donor Age on the Biomechanical and Biochemical Properties of Human Meniscal Allografts
,”
Am. J. Sports Med.
,
37
(
5
), pp.
884
889
.
17.
Tanaka
,
M. L.
,
Vest
,
N.
,
Ferguson
,
C. M.
, and
Gatenholm
,
P.
,
2014
, “
Comparison of Biomechanical Properties of Native Menisci and Bacterial Cellulose Implant
,”
Int. J. Polym. Mater.
,
63
(
17
), pp.
891
897
.
18.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.
19.
Whipple
,
R.
,
Wirth
,
C.
, and
Mow
,
V.
,
1985
, “
Anisotropic and Zonal Variations in the Tensile Properties of the Meniscus
,”
Trans. Orthop. Res. Soc.
,
10
,
p
. 367.
20.
Skaggs
,
D. L.
,
Warden
,
W. H.
, and
Mow
,
V. C.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
(
2
), pp.
176
185
.
21.
Viidik
,
A.
,
1972
, “
Simultaneous Mechanical and Light Microscopic Studies of Collagen Fibers
,”
Z. Anat. Entwicklungsgesch.
,
136
(
2
), pp.
204
212
.
22.
Anderson
,
D. R.
,
Gershuni
,
D. H.
,
Nakhostine
,
M.
, and
Danzig
,
L. A.
,
1993
, “
The Effects of Non-Weight-Bearing and Limited Motion on the Tensile Properties of the Meniscus
,”
Arthroscopy
,
9
(
4
), pp.
440
445
.
23.
Freutel
,
M.
,
Scholz
,
N. B.
,
Seitz
,
A. M.
,
Ignatius
,
A.
, and
Dürselen
,
L.
,
2015
, “
Mechanical Properties and Morphological Analysis of the Transitional Zone Between Meniscal Body and Ligamentous Meniscal Attachments
,”
J. Biomech.
,
48
(
8
), pp.
1350
1355
.
24.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021004
.
25.
Sun
,
W.
,
Scott
,
M. J.
, and
Sacks
,
M. S.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
709
715
.
26.
Polzer
,
S.
,
Gasser
,
T. C.
,
Bursa
,
J.
,
Staffa
,
R.
,
Vlachovsky
,
R.
,
Man
,
V.
, and
Skacel
,
P.
,
2013
, “
Importance of Material Model in Wall Stress Prediction in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1282
1289
.
27.
ASTM,
2014
, “
Standard Test Method for Tensile Properties of Plastics
,” ASTM International, West Conshohocken, PA, Technical Report No. D638-14.
28.
ASTM,
2015
, “
Standard Test Method for Tensile Strength of Leather
,” ASTM International, West Conshohocken, PA, Technical Report No. D2209-00.
29.
ASTM,
2015
, “
Standard Test Methods for Tension Testing of Metallic Materials
,” ASTM International, West Conshohocken, PA, Technical Report No. E8/E8M-15a.
30.
Bowser
,
J. E.
,
Elder
,
S. H.
,
Rashmir-Raven
,
A. M.
, and
Swiderski
,
C. E.
,
2011
, “
A Cryogenic Clamping Technique That Facilitates Ultimate Tensile Strength Determinations in Tendons and Ligaments
,”
Vet. Comp. Orthop. Traumatol.
,
24
(
5
), pp.
370
373
.
31.
Villegas
,
D. F.
,
Maes
,
J. A.
,
Magee
,
S. D.
, and
Haut Donahue
,
T. L.
,
2007
, “
Failure Properties and Strain Distribution Analysis of Meniscal Attachments
,”
J. Biomech.
,
40
(
12
), pp.
2655
2662
.
32.
LeRoux
,
M. A.
, and
Setton
,
L. A.
,
2002
, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
315
321
.
33.
Reese
,
S. P.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2013
, “
Micromechanical Model of a Surrogate for Collagenous Soft Tissues: Development, Validation and Analysis of Mesoscale Size Effects
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1195
1204
.
34.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.
35.
Favata
,
M.
,
2006
, “
Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair
,” Ph.D. thesis,
University of Pennsylvania
,
Philadelphia, PA
.
36.
Swank
,
K. R.
,
Behn
,
A. W.
, and
Dragoo
,
J. L.
,
2014
, “
The Effect of Donor Age on Structural and Mechanical Properties of Allograft Tendons
,”
Am. J. Sports Med.
,
43
(
2
), pp.
453
459
.
37.
Schechtman
,
H.
, and
Bader
,
D.
,
1997
, “
in vitro Fatigue of Human Tendons
,”
J. Biomech.
,
30
(
8
), pp.
829
835
.
38.
Goh
,
K. L.
,
Holmes
,
D. F.
,
Lu
,
Y.
,
Purslow
,
P. P.
,
Kadler
,
K. E.
,
Bechet
,
D.
, and
Wess
,
T. J.
,
2012
, “
Bimodal Collagen Fibril Diameter Distributions Direct Age-Related Variations in Tendon Resilience and Resistance to Rupture
,”
J. Appl. Physiol.
,
113
(
6
), pp.
878
888
.
39.
R Core Team
,
2015
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
40.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
41.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
42.
Jones
,
E.
,
Oliphant
,
T.
, and
Peterson
,
P.
,
2001
, “
SciPy: Open Source Scientific Tools for Python
,” http://www.scipy.org/
43.
Viinikainen
,
A.
,
Göransson
,
H.
,
Huovinen
,
K.
,
Kellomäki
,
M.
,
Törmälä
,
P.
, and
Rokkanen
,
P.
,
2007
, “
The Strength of the 6-Strand Modified Kessler Repair Performed With Triple-Stranded or Triple-Stranded Bound Suture in a Porcine Extensor Tendon Model: An Ex Vivo Study
,”
J. Hand Surg.
,
32
(
4
), pp.
510
517
.
44.
Palmer
,
M.
,
Abreu
,
E.
,
Mastrangelo
,
A.
, and
Murray
,
M.
,
2009
, “
Injection Temperature Significantly Affects In Vitro and In Vivo Performance of Collagen-Platelet Scaffolds
,”
J. Orthop. Res.
,
27
(
7
), pp.
964
971
.
45.
Smith
,
C. D.
,
Masouros
,
S.
,
Hill
,
A. M.
,
Wallace
,
A. L.
,
Amis
,
A. A.
, and
Bull
,
A. M.
,
2008
, “
Mechanical Testing of Intra-Articular Tissues. Relating Experiments to Physiological Function
,”
Curr. Orthop.
,
22
(
5
), pp.
341
348
.
46.
Espejo-Baena
,
A.
,
Ezquerro
,
F.
,
de la Blanca
,
A. P.
,
Serrano-Fernandez
,
J.
,
Nadal
,
F.
, and
Montañez-Heredia
,
E.
,
2006
, “
Comparison of Initial Mechanical Properties of 4 Hamstring Graft Femoral Fixation Systems Using Nonpermanent Hardware for Anterior Cruciate Ligament Reconstruction: An In Vitro Animal Study
,”
Arthroscopy
,
22
(
4
), pp.
433
440
.
47.
Veres
,
S. P.
,
Harrison
,
J. M.
, and
Lee
,
J. M.
,
2013
, “
Cross-Link Stabilization Does Not Affect the Response of Collagen Molecules, Fibrils, or Tendons to Tensile Overload
,”
J. Orthop. Res.
,
31
(
12
), pp.
1907
1913
.
48.
Jones
,
M. C.
,
Rueggeberg
,
F. A.
,
Faircloth
,
H. A.
,
Cunningham
,
A. J.
,
Bush
,
C. M.
,
Prosser
,
J. D.
,
Waller
,
J. L.
,
Postma
,
G. N.
, and
Weinberger
,
P. M.
,
2014
, “
Defining the Biomechanical Properties of the Rabbit Trachea
,”
Laryngoscope
,
124
(
10
), pp.
2352
2358
.
49.
Danso
,
E. K.
,
Honkanen
,
J. T. J.
,
Saarakkala
,
S.
, and
Korhonen
,
R. K.
,
2014
, “
Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus
,”
J. Biomech.
,
47
(
1
), pp.
200
206
.
50.
Barber
,
J. G.
,
Handorf
,
A. M.
,
Allee
,
T. J.
, and
Li
,
W.
,
2011
, “
Braided Nanofibrous Scaffold for Tendon and Ligament Tissue Engineering
,”
Tissue Eng.
, Part A,
19
(
11–12
), pp.
1265
1274
.
51.
Provenzano
,
P. P.
,
Heisey
,
D.
,
Hayashi
,
K.
,
Lakes
,
R.
, and
Vanderby
,
R.
, Jr.
,
2002
, “
Subfailure Damage in Ligament: A Structural and Cellular Evaluation
,”
J. Appl. Physiol.
,
92
(
1
), pp.
362
371
.
52.
Szczesny
,
S. E.
, and
Elliott
,
D. M.
,
2014
, “
Interfibrillar Shear Stress is the Loading Mechanism of Collagen Fibrils in Tendon
,”
Acta Biomater.
,
10
(
6
), pp.
2582
2590
.
53.
Andrews
,
S. H. J.
,
Rattner
,
J. B.
,
Abusara
,
Z.
,
Adesida
,
A.
,
Shrive
,
N. G.
, and
Ronsky
,
J. L.
,
2014
, “
Tie-Fibre Structure and Organization in the Knee Menisci
,”
J. Anatomy
,
224
(
5
), pp.
531
537
.
54.
Vernon-Roberts
,
B.
,
Moore
,
R. J.
, and
Fraser
,
R. D.
,
2007
, “
The Natural History of Age-Related Disc Degeneration: The Pathology and Sequelae of Tears
,”
Spine
,
32
(
25
), pp.
2797
2804
.
55.
Haefeli
,
M.
,
Kalberer
,
F.
,
Saegesser
,
D.
,
Nerlich
,
A. G.
,
Boos
,
N.
, and
Paesold
,
G.
,
2006
, “
The Course of Macroscopic Degeneration in the Human Lumbar Intervertebral Disc
,”
Spine
,
31
(
14
), pp.
1522
1531
.
56.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1990
, “
Material Properties and Structure-Function Relationships in the Menisci
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.
57.
Ng
,
B. H.
,
Chou
,
S. M.
, and
Krishna
,
V.
,
2005
, “
The Influence of Gripping Techniques on the Tensile Properties of Tendons
,”
Proc. Inst. Mech. Eng.
, Part H,
219
(
5
), pp.
349
354
.
58.
Smillie
,
I. S.
,
1978
,
Injuries of the Knee Joint
,
Churchill Livingstone
,
London
.
59.
Horgan
,
C. O.
, and
Simmonds
,
J. G.
,
1994
, “
Saint-Venant End Effects in Composite Structures
,”
Compos. Eng.
,
4
(
3
), pp.
279
286
.
60.
Stronge
,
W. J.
, and
Kashtalyan
,
M.
,
1997
, “
Saint-Venant's Principle for Two-Dimensional Anisotropic Elasticity
,”
Acta Mech.
,
124
(
1–4
), pp.
213
218
.
61.
Wren
,
T. A. L.
,
Lindsey
,
D. P.
,
Beaupré
,
G. S.
, and
Carter
,
D. R.
,
2003
, “
Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons
,”
Ann. Biomed. Eng.
,
31
(
6
), pp.
710
717
.
62.
LaCroix
,
A. S.
,
Duenwald-Kuehl
,
S. E.
,
Lakes
,
R. S.
, and
Vanderby
,
R.
,
2013
, “
Relationship Between Tendon Stiffness and Failure: A Metaanalysis
,”
J. Appl. Physiol.
,
115
(
1
), pp.
43
51
.
63.
ASTM,
2015
, “
Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials
,” ASTM International, West Conshohocken, PA, Technical Report No. D3479/D3479M.
64.
De Baere
,
I.
,
Van Paepegem
,
W.
,
Quaresimin
,
M.
, and
Degrieck
,
J.
,
2011
, “
On the Tension–Tension Fatigue Behaviour of a Carbon Reinforced Thermoplastic Part I: Limitations of the ASTM D3039/D3479 Standard
,”
Polym. Test.
,
30
(
6
), pp.
625
632
.
65.
Arumugam
,
V.
,
Shankar
,
R. N.
,
Sridhar
,
B. T. N.
, and
Stanley
,
A. J.
,
2010
, “
Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens From Acoustic Emission Data
,”
J. Mater. Sci. Technol.
,
26
(
8
), pp.
725
729
.
You do not currently have access to this content.