The electrical response of the skin to mechanical stretches is reported here. The electrical potential difference across the epidermis, i.e., transepidermal potential (TEP) of porcine skin samples subjected to cyclic stretching, was measured in real time to observe electrochemical change in epidermal tissue. In addition to a conventional method of TEP measurement for the whole of skin sample, a probe-type system with a fine-needle salt bridge was used for direct measurement of TEP at a targeted local point of the skin. TEP decreased with the increased mechanical stretches, and the change of TEP was found to be mostly occurred in the epidermis but not dermis nor hypodermis by comparing the results of conventional and the probe-type methods. The observed change of TEP value was quick, reversible, and strain-dependent. Considering from such characteristic behaviors, one of the possible mechanisms of the modulation of TEP would be influence of the streaming potential caused by the fluid flow during the physical deformation of the epidermis.

References

1.
Rubin
,
L.
,
1949
, “
Hyperkeratosis in Response to Mechanical Irritation
,”
J. Invest. Dermatol.
,
13
(
6
), pp.
313
315
.
2.
Sanders
,
J. E.
,
Goldstein
,
B. S.
, and
Leotta
,
D. F.
,
1995
, “
Skin Response to Mechanical Stress: Adaptation Rather Than Breakdown—A Review of the Literature
,”
J. Rehabil. Res. Dev.
,
32
, pp.
214
226
.
3.
Ogawa
,
R.
,
Okai
,
K.
,
Tokumura
,
F.
,
Mori
,
K.
,
Ohmori
,
Y.
,
Huang
,
C.
,
Hyakusoku
,
H.
, and
Akaishi
,
S.
,
2012
, “
The Relationship Between Skin Stretching/Contraction and Pathologic Scarring: The Important Role of Mechanical Forces in Keloid Generation
,”
Wound Repair Regener.
,
20
(
2
), pp.
149
157
.
4.
Baker
,
S. R.
,
1991
, “
Fundamentals of Expanded Tissue
,”
Head Neck
,
13
(
4
), pp.
327
333
.
5.
Hidano
,
A.
,
Mizuguchi
,
M.
, and
Higaki
,
Y.
,
1984
, “
Friction Melanosis
,”
Ann. Dermatol. Venereol.
,
111
(
12
), pp.
1063
1071
.
6.
Reichelt
,
J.
,
2007
, “
Mechanotransduction of Keratinocytes in Culture and in the Epidermis
,”
Eur. J. Cell Biol.
,
86
(
11–12
), pp.
807
816
.
7.
Tokuyama
,
E.
,
Nagai
,
Y.
,
Takahashi
,
K.
,
Kimata
,
Y.
, and
Naruse
,
K.
,
2015
, “
Mechanical Stretch on Human Skin Equivalents Increases the Epidermal Thickness and Develops the Basement Membrane
,”
PLoS One
,
10
(11), pp.
1
12
.
8.
Kurita
,
M.
,
Okazaki
,
M.
,
Fujino
,
T.
,
Takushima
,
A.
, and
Harii
,
K.
,
2011
, “
Cyclic Stretch Induces Upregulation of Endothelin-1 With Keratinocytes In Vitro: Possible Role in Mechanical Stress-Induced Hyperpigmentation
,”
Biochem. Biophys. Res. Commun.
,
409
(
1
), pp.
103
107
.
9.
Baumbauer
,
K. M.
,
Deberry
,
J. J.
,
Adelman
,
P. C.
,
Miller
,
R. H.
,
Hachisuka
,
J.
,
Lee
,
K. H.
,
Ross
,
S. E.
,
Koerber
,
H. R.
,
Davis
,
B. M.
, and
Albers
,
K. M.
,
2015
, “
Keratinocytes Can Modulate and Directly Initiate Nociceptive Responses
,”
eLIFE
,
4
, pp.
1
14
.
10.
Moehring
,
F.
,
Cowie
,
A. M.
,
Menzel
,
A. D.
,
Weyer
,
A. D.
,
Grzybowski
,
M.
,
Arzua
,
T.
,
Geurts
,
A. M.
,
Palygin
,
O.
, and
Stucky
,
C. L.
,
2018
, “
Keratinocytes Mediate Innocuous and Noxious Touch Via ATP-P2X4 Signaling
,”
eLIFE
,
7
, pp.
1
35
.
11.
Barker
,
A. T.
,
Jaffe
,
L. F.
, and
Vanable
,
J. W.
, Jr.
,
1982
, “
The Glabrous Epidermis of Cavies Contains a Powerful Battery
,”
Am. J. Physiol.
,
242
(
3
), pp.
R358
R366
.
12.
Nuccitelli
,
R.
,
2003
, “
A Role for Endogenous Electric Fields in Wound Healing
,”
Curr. Top. Dev. Biol.
,
58
, pp.
1
26
.
13.
Denda
,
M.
,
Ashida
,
Y.
,
Inoue
,
K.
, and
Kumazawa
,
N.
,
2001
, “
Skin Surface Electric Potential Induced by Ion-Flux Through Epidermal Cell Layers
,”
Biochem. Biophys. Res. Commun.
,
284
(
1
), pp.
112
117
.
14.
Kawai
,
E.
,
Nakanishi
,
J.
,
Kumazawa
,
N.
,
Ozawa
,
K.
, and
Denda
,
M.
,
2008
, “
Skin Surface Electric Potential as an Indicator of Skin Condition: A New Non-Invasive Method to Evaluate Epidermal Condition
,”
Exp. Dermatol.
,
17
(
8
), pp.
688
692
.
15.
Abe
,
Y.
,
Nagamine
,
K.
,
Nakabayashi
,
M.
,
Kai
,
H.
,
Kaji
,
H.
,
Yamauchi
,
T.
,
Yamasaki
,
K.
, and
Nishizawa
,
M.
,
2016
, “
Minimally-Invasive Transepidermal Potentiometry With Microneedle Salt Bridge
,”
Biomed. Microdevices
,
18
, p.
55
.
16.
Dubé
,
J.
,
Rochette-Drouin
,
O.
,
Lévesque
,
P.
,
Gauvin
,
R.
,
Roberge
,
C. J.
,
Auger
,
F. A.
,
Goulet
,
D.
,
Bourdages
,
M.
,
Plante
,
M.
,
Germain
,
L.
, and
Moulin
,
V. J.
,
2010
, “
Restoration of the Transepithelial Potential Within Tissue-Engineered Human Skin In Vitro and During the Wound Healing Process In Vivo
,”
Tissue Eng. Part A
,
16
(
10
), pp.
3055
3063
.
17.
Sugihara
,
T.
,
Ohura
,
T.
,
Homma
,
K.
, and
Igawa
,
H. H.
,
1991
, “
The Extensibility in Human Skin: Variation According to Age and Site
,”
Br. J. Plast. Surg.
,
44
(
6
), pp.
418
422
.
18.
Matsuyama
,
S.
,
2015
, “
The Microbeam System at Tohoku University
,”
Int. J. PIXE
,
25
(
03n04
), pp.
153
185
.
19.
Athenstaedt
,
H.
,
Claussen
,
H.
, and
Schaper
,
D.
,
1982
, “
Epidermis of Human Skin: Pyroelectric and Piezoelectric Sensor Layer
,”
Science
,
216
(
4549
), pp.
1018
1020
.
20.
Gross
,
D.
, and
Williams
,
W. S.
,
1982
, “
Streaming Potential and the Electromechanical Response of Physiologically-Moist Bone
,”
J. Biomech.
,
15
(
4
), pp.
277
295
.
21.
Igarashi
,
T.
,
Anno
,
H.
,
Furuya
,
K.
, and
Yukawa
,
Y.
,
1991
, “
Mechanism of Streaming Potential in Deformed Bones
,”
Kobunshi Ronbunshu
,
48
(
12
), pp.
751
758
.
22.
Anderson
,
J. C.
, and
Eriksson
,
C.
,
1970
, “
Piezoelectric Properties of Dry and Wet Bone
,”
Nature
,
227
(
5257
), pp.
491
492
.
23.
Ciombor
,
D. M.
, and
Aaron
,
R. K.
,
2005
, “
The Role of Electrical Stimulation in Bone Repair
,”
Foot Ankle Clin.
,
10
(
4
), pp.
579
593
.
You do not currently have access to this content.