Abstract

An experimental study is reported which investigates the wall shear stress (WSS) distribution in a transparent model of the human aorta comparing an St. Jude Medical (SJM) Regent bileaflet mechanical heart valve (BMHV) with the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV) in physiological pulsatile flow. Elastic microcantilever structures, calibrated as micropillar WSS sensors by microparticle-image-velocimetry measurements, are applied to the wall along the ascending aorta (AAo). The peak WSS values in the BMHV are observed to be almost twice that of the values seen in the TMHV. Flow field analysis illuminates that these peaks are linked to the jet-like flows generated in the valves interacting with the aortic wall. Not only the magnitude but also the impact regions are specific for different valve designs. The side-orifice jets generated by the BMHV travel along the aortic wall in the AAo, impacting the wall throughout the AAo. However, the jets generated by TMHV impact further downstream in the AAo and results in a reduced WSS.

References

1.
Barannyk
,
O.
, and
Oshkai
,
P.
,
2015
, “
The Influence of the Aortic Root Geometry on Flow Characteristics of a Prosthetic Heart Valve
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051005
.10.1115/1.4029747
2.
Iung
,
B.
,
Baron
,
G.
,
Butchart
,
E. G.
,
Delahaye
,
F.
,
Gohlke-Bärwolf
,
C.
,
Levang
,
O. W.
,
Tornos
,
P.
,
Vanoverschelde
,
J. L.
,
Vermeer
,
F.
,
Boersma
,
E.
, and
Ravaud
,
P.
,
2003
, “
A Prospective Survey of Patients With Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease
,”
Eur. Heart. J.
,
24
(
13
), pp.
1231
1243
.10.1016/S0195-668X(03)00201-X
3.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Jones
,
S. C.
,
2004
, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
,
6
, pp.
331
362
.10.1146/annurev.bioeng.6.040803.140111
4.
Coffey
,
S.
,
Cairns
,
B. J.
, and
Iung
,
B.
,
2015
, “
The Modern Epidemiology of Heart Valve Disease
,”
Heart
,
102
(
1
), pp.
75
85
.10.1136/heartjnl-2014-307020
5.
Griffin
,
B. P.
,
Topol
,
E. J.
,
Nair
,
D.
, and
Ashley
,
K.
,
2008
,
Manual of Cardiovascular Medicine
,
Lippincott Williams & Wilkins
, Philadelphia, PA.
6.
Huygens
,
S. A.
,
Goossens
,
L. M.
,
van Erkelens
,
J. A.
,
Takkenberg
,
J. J.
, and
Rutten-van Mölken
,
M. P.
,
2018
, “
How Much Does a Heart Valve Implantation Cost and What Are the Health Care Costs Afterwards?
,”
Open Heart
,
5
(
1
), p.
e000672
.10.1136/openhrt-2017-000672
7.
Fernandez
,
J.
,
Laub
,
G. W.
,
Adkins
,
M. S.
,
Anderson
,
W. A.
,
Chen
,
C.
,
Bailey
,
B. M.
,
Nealon
,
L. M.
, and
McGrath
,
L. B.
,
1994
, “
Early and Late-Phase Events After Valve Replacement With the St. Jude Medical Prosthesis in 1200 Patients
,”
J. Thorac. Cardiovasc. Surg.
,
107
(
2
), pp.
394
407
.10.1016/S0022-5223(94)70084-2
8.
Sotiropoulos
,
F.
,
Trung
,
B. L.
, and
Anvar
,
G.
,
2016
, “
Fluid Mechanics of Heart Valves and Their Replacements
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
259
283
.10.1146/annurev-fluid-122414-034314
9.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H. A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2007
, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids.
,
19
(
6
), p.
067105
.10.1063/1.2743261
10.
Haruguchi
,
H.
, and
Teraoka
,
S.
,
2003
, “
Intimal Hyperplasia and Hemodynamic Factors in Arterial Bypass and Arteriovenous Grafts: A Review
,”
J. Artif. Organs.
,
6
(
4
), pp.
227
235
.10.1007/s10047-003-0232-x
11.
Walker
,
P. G.
, and
Yoganathan
,
A. P.
,
1992
, “
In Vitro Pulsatile Flow Hemodynamics of Five Mechanical Aortic Heart Valve Prostheses
,”
Eur. J. Cardio-Thorac.
,
6
(
Suppl. 1
), pp.
S113
S123
.10.1093/ejcts/6.Supplement_1.S113
12.
Marsden
,
A. L.
,
Bazilevs
,
Y.
,
Long
,
C. C.
, and
Behr
,
M.
,
2014
, “
Recent Advances in Computational Methodology for Simulation of Mechanical Circulatory Assist Devices
,”
Wires. Syst. Biol. Med.
,
6
(
2
), pp.
169
188
.10.1002/wsbm.1260
13.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
,
2000
, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
31
(
4
), pp.
760
769
.10.1067/mva.2000.103971
14.
Shaaban
,
A. M.
, and
Duerinckx
,
A. J.
,
2000
, “
Wall Shear Stress and Early Atherosclerosis: A Review
,”
Am. J. Roentgenol.
,
174
(
6
), pp.
1657
1665
.10.2214/ajr.174.6.1741657
15.
De Tullio
,
M. D.
,
Cristallo
,
A.
,
Balaras
,
E.
, and
Verzicco
,
R.
,
2009
, “
Direct Numerical Simulation of the Pulsatile Flow Through an Aortic Bileaflet Mechanical Heart Valve
,”
J. Fluid. Mech.
,
622
, pp.
259
290
.10.1017/S0022112008005156
16.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2018
, “
Wall Shear Stress Fixed Points in Cardiovascular Fluid Mechanics
,”
J. Biomech.
,
73
, pp.
145
152
.10.1016/j.jbiomech.2018.03.034
17.
Meierhofer
,
C.
,
Schneider
,
E. P.
,
Lyko
,
C.
,
Hutter
,
A.
,
Martinoff
,
S.
,
Markl
,
M.
,
Hager
,
A.
,
Hess
,
J.
,
Stern
,
H.
, and
Fratz
,
S.
,
2012
, “
Wall Shear Stress and Flow Patterns in the Ascending Aorta in Patients With Bicuspid Aortic Valves Differ Significantly From Tricuspid Aortic Valves: A Prospective Study
,”
Eur. Heart. J.: Cardiovasc. Imaging
,
14
(
8
), pp.
797
804
.10.1093/ehjci/jes273
18.
Brücker
,
C.
,
Spatz
,
J.
, and
Schröder
,
W.
,
2005
, “
Feasability Study of Wall Shear Stress Imaging Using Microstructured Surfaces With Flexible Micropillars
,”
Exp. Fluids.
,
39
(
2
), pp.
464
474
.10.1007/s00348-005-1003-7
19.
Zahn
,
R.
,
Gerckens
,
U.
,
Grube
,
E.
,
Linke
,
A.
,
Sievert
,
H.
,
Eggebrecht
,
H.
,
Hambrecht
,
R.
,
Sack
,
S.
,
Hauptmann
,
K. E.
,
Richardt
,
G.
,
Figulla
,
H.-R.
, and
Senges
,
J.
,
2011
, “
Transcatheter Aortic Valve Implantation: First Results From a Multi-Centre Real-World Registry
,”
Eur. Heart. J.
,
32
(
2
), pp.
198
204
.10.1093/eurheartj/ehq339
20.
Linde
,
T.
,
Hamilton
,
K. F.
,
Navalon
,
E. C.
,
Schmitz-Rode
,
T.
, and
Steinseifer
,
U.
,
2012
, “
Aortic Root Compliance Influences Hemolysis in Mechanical Heart Valve Prostheses: An In-Vitro Study
,”
Int. J. Artif. Organs
,
35
(
7
), pp.
495
502
.10.5301/ijao.5000108
21.
Vennemann
,
B. M.
,
Rösgen
,
T.
,
Carrel
,
T. P.
, and
Obrist
,
D.
,
2016
, “
Time-Resolved Micro PIV in the Pivoting Area of the Triflo Mechanical Heart Valve
,”
Cardiovasc. Eng. Technol.
,
7
(
3
), pp.
210
222
.10.1007/s13239-016-0264-z
22.
Gallegos
,
R. P.
,
Rivard
,
A. L.
,
Suwan
,
P. T.
,
Black
,
S.
,
Bertog
,
S.
,
Steinseifer
,
U.
,
Armien
,
A.
,
Lahti
,
M.
, and
Bianco
,
R. W.
,
2006
, “
In-Vivo Experience With the Triflo Trileaflet Mechanical Heart Valve
,”
J. Heart Valve Dis.
,
15
(
6
), pp.
791
799
.http://europepmc.org/abstract/MED/17152787
23.
Hegner
,
F.
, and
Brücker
,
C.
,
2016
, “
Combined TR-PIV and Micro-Pillar Wall Shear-Stress Imaging in the Aortic Root
,”
18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
, Lisbon, Portugal, July 4–7, pp. 271–284.https://www.researchgate.net/publication/305316468_Combined_TR-PIV_and_micro-pillar_Wall_Shear-Stress_imaging_in_the_aortic_root
24.
Lapeyre
,
D.
, and
Steinseifer
,
U.
,
2002
, “
Mechanical Heart Valve
,” U.S. Patent No. 6,395,024.
25.
Hegner
,
F.
,
Hess
,
D.
, and
Brücker
,
C.
,
2015
, “
Volumetric 3D PIV in Heart Valve Flow
,”
11th International Symposium on Particle Image Velocimetry
(
PIV15
), Santa Barbara, CA, Sept. 14–16, Paper No. 01.12_2_54.https://www.researchgate.net/publication/282133294_Volumetric_3D_PIV_in_heart_valve_flow
26.
Vasava
,
P.
,
Jalali
,
P.
, and
Dabagh
,
M.
,
2009
, “
Computational Study of Pulstile Blood Flow in Aortic Arch: Effect of Blood Pressure
,”
World Congress on Medical Physics and Biomedical Engineering
, Sept. 7–12, Munich, Germany, pp.
1198
1201
.
27.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
,
2002
, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
ASME J. Biomech. Eng.
,
124
(
4
), pp.
378
387
.10.1115/1.1487357
28.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, New York.
29.
Kim
,
T.
,
Cheer
,
A. Y.
, and
Dwyer
,
H. A.
,
2004
, “
A Simulated Dye Method for Flow Visualization With a Computational Model for Blood Flow
,”
J. Biomech.
,
37
(
8
), pp.
1125
1136
.10.1016/j.jbiomech.2003.12.028
30.
Fung
,
Y. C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
, New York.
31.
Clauser
,
J.
,
Knieps
,
M. S.
,
Büsen
,
M.
,
Ding
,
A.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, and
Arens
,
J.
, and
Cattaneo
,
G.
,
2018
, “
A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model
,”
Ann. Biomed. Eng.
,
46
(
6
), pp.
841
848
.10.1007/s10439-018-2002-1
32.
Haller
,
G.
, and
Sapsis
,
T.
,
2011
, “
Lagrangian Coherent Structures and the Smallest Finite-Time Lyapunov Exponent
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
21
(
2
), p.
023115
.10.1063/1.3579597
33.
Brücker
,
C.
,
Bauer
,
D.
, and
Chaves
,
H.
,
2007
, “
Dynamic Response of Micro-Pillar Sensors Measuring Fluctuating Wall-Shear-Stress
,”
Exp. Fluids
,
42
(
5
), pp.
737
749
.10.1007/s00348-007-0282-6
34.
Kundu
,
P. K.
, and
Cohen
,
I. M.
,
2012
,
Fluid Mechanics
, Academic Press, San Diego, CA.
35.
Dickinson
,
B. T.
,
Singler
,
J. R.
, and
Batten
,
B. A.
,
2012
, “
Mathematical Modeling and Simulation of Biologically Inspired Hair Receptor Arrays in Laminar Unsteady Flow Separation
,”
J. Fluid. Struct.
,
29
, pp.
1
17
.10.1016/j.jfluidstructs.2011.12.010
36.
Stalder
,
A. F.
,
Frydrychowicz
,
A.
,
Russe
,
M. F.
,
Korvink
,
J. G.
,
Hennig
,
J.
,
Li
,
K.
, and
Markl
,
M.
,
2011
, “
Assessment of Flow Instabilities in the Healthy Aorta Using Flow‐Sensitive MRI
,”
J. Magn. Reson. Imag.
,
33
(
4
), pp.
839
846
.10.1002/jmri.22512
37.
Brücker
,
C.
,
Steinseifer
,
U.
,
Schröder
,
W.
, and
Reul
,
H.
,
2002
, “
Unsteady Flow Through a New Mechanical Heart Valve Prosthesis Analysed by Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
13
(
7
), p.
1043
.10.1088/0957-0233/13/7/311
38.
Lantz
,
J.
,
Renner
,
J.
, and
Karlsson
,
M.
,
2011
, “
Wall Shear Stress in a Subject Specific Human Aorta—Influence of Fluid-Structure Interaction
,”
Int. J. Appl. Mech.
,
3
(
4
), pp.
759
778
.10.1142/S1758825111001226
39.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
40.
Gülan
,
U.
, and
Holzner
,
M.
,
2018
, “
The Influence of Bileaflet Prosthetic Aortic Valve Orientation on the Blood Flow Patterns in the Ascending Aorta
,”
Med. Eng. Phys.
,
60
, pp.
61
69
.10.1016/j.medengphy.2018.07.013
You do not currently have access to this content.