Abstract

Understanding the structural response of bone during locomotion may help understand the etiology of stress fracture. This can be done in a subject-specific manner using finite element (FE) modeling, but care is needed to ensure that modeling assumptions reflect the in vivo environment. Here, we explored the influence of loading and boundary conditions (BC), and compared predictions to previous in vivo measurements. Data were collected from a female participant who walked/ran on an instrumented treadmill while motion data were captured. Inverse dynamics of the leg (foot, shank, and thigh segments) was combined with a musculoskeletal (MSK) model to estimate muscle and joint contact forces. These forces were applied to an FE model of the tibia, generated from computed tomography (CT). Eight conditions varying loading/BCs were investigated. We found that modeling the fibula was necessary to predict realistic tibia bending. Applying joint moments from the MSK model to the FE model was also needed to predict torsional deformation. During walking, the most complex model predicted deformation of 0.5 deg posterior, 0.8 deg medial, and 1.4 deg internal rotation, comparable to in vivo measurements of 0.5–1 deg, 0.15–0.7 deg, and 0.75–2.2 deg, respectively. During running, predicted deformations of 0.3 deg posterior, 0.3 deg medial, and 0.5 deg internal rotation somewhat underestimated in vivo measures of 0.85–1.9 deg, 0.3–0.9 deg, 0.65–1.72 deg, respectively. Overall, these models may be sufficiently realistic to be used in future investigations of tibial stress fracture.

References

1.
Jones
,
B. H.
,
Thacker
,
S. B.
,
Gilchrist
,
J.
,
Kimsey
,
C. D.
, and
Sosin
,
D. M.
,
2002
, “
Prevention of Lower Extremity Stress Fractures in Athletes and Soldiers: A Systematic Review
,”
Epidemiol. Rev.
,
24
(
2
), pp.
228
247
.10.1093/epirev/mxf011
2.
Matheson
,
G. O.
,
Clement
,
D. B.
,
Mckenzie
,
D. C.
,
Taunton
,
J. E.
,
Lloyd-Smith
,
D. R.
, and
Macintyre
,
J. G.
,
1987
, “
Stress Fractures in Athletes: A Study of 320 Cases
,”
Am. J. Sports Med.
,
15
(
1
), pp.
46
58
.10.1177/036354658701500107
3.
Burr
,
D. B.
,
1997
, “
Bone, Exercise, and Stress Fractures
,”
Exerc. Sport Sci. Rev.
,
25
(1), pp.
171
94
.
4.
Brent Edwards
,
W.
,
2018
, “
Modeling Overuse Injuries in Sport as a Mechanical Fatigue Phenomenon
,”
Exerc. Sport Sci. Rev.
,
46
(
4
), pp.
224
231
.10.1249/JES.0000000000000163
5.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
,
1996
, “
The Accumulation of Fatigue Microdamage in Human Cortical Bone of Two Different Ages In Vivo
,”
Clin. Biomech.
,
11
(
7
), pp.
365
375
.10.1016/0268-0033(96)00010-1
6.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
,
1981
, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta Orthop.
,
52
(
5
), pp.
481
490
.10.3109/17453678108992136
7.
Matcuk
,
G. R.
,
Mahanty
,
S. R.
,
Skalski
,
M. R.
,
Patel
,
D. B.
,
White
,
E. A.
, and
Gottsegen
,
C. J.
,
2016
, “
Stress Fractures: Pathophysiology, Clinical Presentation, Imaging Features, and Treatment Options
,”
Emerg. Radiol.
,
23
(
4
), pp.
365
375
.10.1007/s10140-016-1390-5
8.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.10.1016/0021-9290(94)00156-1
9.
Milgrom
,
C.
,
Radeva-Petrova
,
D. R.
,
Finestone
,
A.
,
Nyska
,
M.
,
Mendelson
,
S.
,
Benjuya
,
N.
,
Simkin
,
A.
, and
Burr
,
D.
,
2007
, “
The Effect of Muscle Fatigue on In Vivo Tibial Strains
,”
J. Biomech.
,
40
(
4
), pp.
845
850
.10.1016/j.jbiomech.2006.03.006
10.
Milgrom
,
C.
,
Finestone
,
A.
,
Levi
,
Y.
,
Simkin
,
A.
,
Ekenman
,
I.
,
Mendelson
,
S.
,
Millgram
,
M.
,
Nyska
,
M.
,
Benjuya
,
N.
, and
Burr
,
D.
,
2000
, “
Do High Impact Exercises Produce Higher Tibial Strains Than Running?
,”
Br. J. Sports Med.
,
34
(
3
), pp.
195
199
.10.1136/bjsm.34.3.195
11.
Milgrom
,
C.
,
Finestone
,
A.
,
Segev
,
S.
,
Olin
,
C.
,
Arndt
,
T.
, and
Ekenman
,
I.
,
2003
, “
Are Overground or Treadmill Runners More Likely to Sustain Tibial Stress Fracture?
,”
Br. J. Sports Med.
,
37
(
2
), pp.
160
163
.10.1136/bjsm.37.2.160
12.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.10.1016/8756-3282(96)00028-2
13.
Lanyon
,
L. E.
,
Hampson
,
W. G. J.
,
Goodship
,
A. E.
,
Shah
,
J. S.
,
Hampson
,
W. G. J.
,
Goodship
,
A. E.
, and
Bone
,
J. S. S.
,
1975
, “
Bone Deformation Recorded In Vivo From Strain Gauges Attached to the Human Tibial Shaft
,”
Acta Orthop. Scand.
,
46
(
2
), pp.
256
268
.10.3109/17453677508989216
14.
Yang
,
P. F.
,
Sanno
,
M.
,
Ganse
,
B.
,
Koy
,
T.
,
Brüggemann
,
G. P.
,
Müller
,
L. P.
, and
Rittweger
,
J.
,
2014
, “
Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes During Walking and Running
,”
PLoS One
,
9
(
4
).10.1371/journal.pone.0094525
15.
Haider
,
I. T.
,
Schneider
,
P.
,
Michalski
,
A.
, and
Edwards
,
W. B.
,
2018
, “
Influence of Geometry on Proximal Femoral Shaft Strains: Implications for Atypical Femoral Fracture
,”
Bone
,
110
, pp.
295
303
.10.1016/j.bone.2018.02.015
16.
Edwards
,
W. B.
,
Taylor
,
D.
,
Rudolphi
,
T. J.
,
Gillette
,
J. C.
, and
Derrick
,
T. R.
,
2010
, “
Effects of Running Speed on a Probabilistic Stress Fracture Model
,”
Clin. Biomech.
,
25
(
4
), pp.
372
377
.10.1016/j.clinbiomech.2010.01.001
17.
Edwards
,
W. B.
,
Miller
,
R. H.
, and
Derrick
,
T. R.
,
2016
, “
Femoral Strain During Walking Predicted With Muscle Forces From Static and Dynamic Optimization
,”
J. Biomech.
,
49
(
7
), pp.
1206
1213
.10.1016/j.jbiomech.2016.03.007
18.
Xu
,
C.
,
Silder
,
A.
,
Zhang
,
J.
,
Hughes
,
J.
,
Unnikrishnan
,
G.
,
Reifman
,
J.
, and
Rakesh
,
V.
,
2016
, “
An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
101001
.10.1115/1.4034216
19.
Hadid
,
A.
,
Epstein
,
Y.
,
Shabshin
,
N.
, and
Gefen
,
A.
,
2018
, “
Biomechanical Model for Stress Fracture–Related Factors in Athletes and Soldiers
,”
Med. Sci. Sport. Exerc.
,
50
(
9
), pp.
1827
1836
.10.1249/MSS.0000000000001628
20.
Diffo Kaze
,
A.
,
Maas
,
S.
,
Arnoux
,
P.-J.
,
Wolf
,
C.
, and
Pape
,
D.
,
2017
, “
A Finite Element Model of the Lower Limb During Stance Phase of Gait Cycle Including the Muscle Forces
,”
Biomed. Eng. Online
,
16
(
1
), p.
138
.10.1186/s12938-017-0428-6
21.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O'Connor
,
J. C.
,
1999
, “
Dynamics of Human Gait
,”
Dynamics of Human Gait
, Vol.
1
,
Human Kinetics Publishers
,
Cape Town, South Africa
.
22.
Boyer
,
E. R.
, and
Derrick
,
T. R.
,
2018
, “
Lower Extremity Joint Loads in Habitual Rearfoot and Mid/Forefoot Strike Runners With Normal and Shortened Stride Lengths
,”
J. Sports Sci.
,
36
(
5
), pp.
499
505
.10.1080/02640414.2017.1321775
23.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
24.
Edwards
,
W. B.
,
Schnitzer
,
T. J.
, and
Troy
,
K. L.
,
2013
, “
Torsional Stiffness and Strength of the Proximal Tibia Are Better Predicted by Finite Element Models Than DXA or QCT
,”
J. Biomech.
,
46
(
10
), pp.
1655
1662
.10.1016/j.jbiomech.2013.04.016
25.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
,
1993
, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
,
26
(
4–5
), pp.
523
535
.10.1016/0021-9290(93)90014-6
26.
Rho
,
J. Y.
,
1996
, “
An Ultrasonic Method for Measuring the Elastic Properties of Human Tibial Cortical and Cancellous Bone
,”
Ultrasonics
,
34
(
8
), pp.
777
783
.10.1016/S0041-624X(96)00078-9
27.
Speirs
,
A. D.
,
Heller
,
M. O.
,
Duda
,
G. N.
, and
Taylor
,
W. R.
,
2007
, “
Physiologically Based Boundary Conditions in Finite Element Modelling
,”
J. Biomech.
,
40
(
10
), pp.
2318
23
.10.1016/j.jbiomech.2006.10.038
28.
Zhao
,
D.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2007
, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.10.1002/jor.20362
29.
Carrera
,
I.
,
Gelber
,
P. E.
,
Chary
,
G.
,
Gomez Masdeu
,
M.
,
González Ballester
,
M. A.
,
Monllau
,
J. C.
, and
Noailly
,
J.
,
2018
, “
An Intact Fibula May Contribute to Allow Early Weight Bearing in Surgically Treated Tibial Plateau Fractures
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
26
(
3
), pp.
756
761
.10.1007/s00167-017-4428-7
30.
Burkhart
,
T. A.
,
Asa
,
B.
,
Payne
,
M. W. C.
,
Johnson
,
M.
,
Dunning
,
C. E.
, and
Wilson
,
T. D.
,
2015
, “
Anatomy of the Proximal Tibiofibular Joint and Interosseous Membrane, and Their Contributions to Joint Kinematics in Below-Knee Amputations
,”
J. Anat.
,
226
(
2
), pp.
143
149
.10.1111/joa.12263
31.
Scott
,
J.
,
Lee
,
H.
,
Barsoum
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
The Effect of Tibiofemoral Loading on Proximal Tibiofibular Joint Motion
,”
J. Anat.
,
211
(
5
), pp.
647
653
.10.1111/j.1469-7580.2007.00803.x
32.
Beumer
,
A.
,
Hemert
,
W. L. W. V.
,
Swierstra
,
B. A.
,
Jasper
,
L. E.
, and
Belkoff
,
S. M.
,
2003
, “
A Biomechanical Evaluation of the Tibio Bular and Tibiotalar Ligaments of the Ankle
,”
Foot Ankle Int.
,
24
(
5
), pp.
426
429
.10.1177/107110070302400509
33.
Marchetti
,
D. C.
,
Moatshe
,
G.
,
Phelps
,
B. M.
,
Dahl
,
K. D.
,
Ferrari
,
M. B.
,
Chahla
,
J.
,
Turnbull
,
T. L.
, and
LaPrade
,
R. F.
,
2017
, “
The Proximal Tibiofibular Joint: A Biomechanical Analysis of the Anterior and Posterior Ligamentous Complexes
,”
Am. J. Sports Med.
,
45
(
8
), pp.
1888
1892
.10.1177/0363546517697288
34.
Lambert
,
K. L.
,
1971
, “
The Weight-Bearing Function of the Fibula. A Strain Gauge Study
,”
J. Bone Jt. Surg. Am.
,
53
(
3
), pp.
507
513
.10.2106/00004623-197153030-00007
35.
Garijo
,
N.
,
Verdonschot
,
N.
,
Engelborghs
,
K.
,
García-Aznar
,
J. M.
, and
Pérez
,
M. A.
,
2017
, “
Subject-Specific Musculoskeletal Loading of the Tibia: Computational Load Estimation
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
334
343
.10.1016/j.jmbbm.2016.08.026
36.
Firminger
,
C. R.
,
Fung
,
A.
,
Loundagin
,
L. L.
, and
Edwards
,
W. B.
,
2017
, “
Effects of Footwear and Stride Length on Metatarsal Strains and Failure in Running
,”
Clin. Biomech.
,
49
, pp.
8
15
.10.1016/j.clinbiomech.2017.08.006
37.
Edwards
,
W. B.
,
Taylor
,
D.
,
Rudolphi
,
T. J.
,
Gillette
,
J. C.
, and
Derrick
,
T. R.
,
2009
, “
Effects of Stride Length and Running Mileage on a Probabilistic Stress Fracture Model
,”
Med. Sci. Sports Exerc.
,
41
(
12
), pp.
2177
2184
.10.1249/MSS.0b013e3181a984c4
38.
Milner
,
C. E.
,
Davis
,
I. S.
, and
Hamill
,
J.
,
2006
, “
Free Moment as a Predictor of Tibial Stress Fracture in Distance Runners
,”
J. Biomech.
,
39
(
15
), pp.
2819
2825
.10.1016/j.jbiomech.2005.09.022
39.
Holden
,
J. P.
, and
Cavanagh
,
P. R.
,
1991
, “
The Free Moment of Ground Reaction in Distance Running and Its Changes With Pronation
,”
J. Biomech.
,
24
(
10
), pp.
887
897
.10.1016/0021-9290(91)90167-L
40.
Spector
,
F. C.
,
Karlin
,
J. M.
,
DeValentine
,
S.
,
Scurran
,
B. L.
, and
Silvani
,
S. L.
,
1983
, “
Spiral Fracture of the Distal Tibia: An Unusual Stress Fracture
,”
J. Foot Surg.
,
22
(
4
), pp.
358
61
.
41.
Dal
,
U.
,
Erdogan
,
T.
,
Resitoglu
,
B.
, and
Beydagi
,
H.
,
2010
, “
Determination of Preferred Walking Speed on Treadmill May Lead to High Oxygen Cost on Treadmill Walking
,”
Gait Posture
,
31
(
3
), pp.
366
369
.10.1016/j.gaitpost.2010.01.006
42.
Bergmann
,
G.
(ed.), and
Charité Universitaetsmedizin Berlin
,
2018
, “
Orthoload Database
,” Berlin, accessed Oct. 10, 2018, https://orthoload.com/entries:k1l_180908;k2l_300908_1_19p;k3r_300908_1_27p;k5r_020210_1_59p;k7l_080611_1_31p;k8l_020210_ 2_128p;
43.
Derrick
,
T. R.
,
Edwards
,
W. B.
,
Fellin
,
R. E.
, and
Seay
,
J. F.
,
2016
, “
An Integrative Modeling Approach for the Efficient Estimation of Cross Sectional Tibial Stresses During Locomotion
,”
J. Biomech.
,
49
(
3
), pp.
429
435
.10.1016/j.jbiomech.2016.01.003
You do not currently have access to this content.