Abstract

The goals of this study are to compare the lumbar spine response variance between the hybrid III, test device for human occupant restraint (THOR), and global human body models consortium simplified 50th percentile (GHBMC M50-OS) finite element models and evaluate the sensitivity of lumbar spine injury metrics to multidirectional acceleration pulses for spaceflight landing conditions. The hybrid III, THOR, and GHBMC models were positioned in a baseline posture within a generic seat with side guards and a five-point restraint system. Thirteen boundary conditions, which were categorized as loading condition variables and environmental variables, were included in the parametric study using a Latin hypercube design of experiments. Each of the three models underwent 455 simulations for a total of 1365 simulations. The hybrid III and THOR models exhibited similar lumbar compression forces. The average lumbar compression force was 45% higher for hybrid III (2.2 ± 1.5 kN) and 51% higher for THOR (2.0 ± 1.6 kN) compared to GHBMC (1.3 ± 0.9 kN). Compared to hybrid III, THOR sustained an average 64% higher lumbar flexion moment and an average 436% higher lumbar extension moment. The GHBMC model sustained much lower bending moments compared to hybrid III and THOR. Regressions revealed that lumbar spine responses were more sensitive to loading condition variables than environmental variables across all models. This study quantified the intermodel lumbar spine response variations and sensitivity between hybrid III, THOR, and GHBMC. Results improve the understanding of lumbar spine response in spaceflight landings.

References

1.
Caldwell
,
E.
,
Gernhardt
,
M.
,
Somers
,
J. T.
,
Younker
,
D.
, and
Newby
,
N.
,
2012
, “
Evidence Report: Risk of Injury Due to Dynamic Loads
,”
Report
, National Aeronautics and Space Administration, Houston, TX.https://humanresearchroadmap.nasa.gov/Evidence/reports/Occupant%20Protection.pdf
2.
Somers
,
J. T.
,
Gohmert
,
D. M.
, and
Brinkley
,
J. W.
,
2014
, “
Spacecraft Occupant Protection Requirements: A Review of the Recent Changes
,”
Aviat., Space, Environ. Med.
,
85
(
9
), pp.
940
948
.10.3357/ASEM.4004.2014
3.
Gaewsky
,
J. P.
,
Jones
,
D. A.
,
Ye
,
X.
,
Koya
,
B.
,
McNamara
,
Gayzik
,
F. S.
,
Weaver
,
A. A.
,
Putnam
,
J. B.
,
Somers
,
J. T.
, and
Stitzel
,
J. D.
,
2019
, “
Modeling Human Volunteers in Multidirectional, Uni-Axial Sled Tests Using a Finite Element Human Body Model
,”
Ann. Biomed. Eng.
,
47
(
2
), pp.
487
511
.10.1007/s10439-018-02147-3
4.
Jones
,
D.
,
Gaewsky
,
J.
,
Saffarzadeh
,
M.
,
Putnam
,
J.
,
Weaver
,
A.
,
Somers
,
J.
, and
Stitzel
,
J. D.
,
2018
, “
Multi-Direction Validation of a Finite Element 50th Percentile Male Hybrid III Anthropomorphic Test Device for Spaceflight Applications
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
031004
.10.1115/1.4041906
5.
McNamara
,
K.
,
Jones
,
D.
,
Gaewsky
,
J.
,
Weaver
,
A.
, and
Stitzel
,
J.
,
2018
, “
Validation of a Finite Element 50th Percentile THOR Anthropomorphic Test Device in Multiple Sled Test Configurations
,”
Stapp Car Crash J.
,
62
, pp.
415
442
.10.4271/2018-22-0012
6.
McNamara
,
K. P.
,
Jones
,
D. A.
,
Gaewsky
,
J. P.
,
Gayzik
,
F. S.
,
Weaver
,
A. A.
, and
Stitzel
,
J. D.
,
2017
, “
Validating FE HYBRID III, THOR, and GHBMC M50-OS for Future Spaceflight Configuration Testing
,”
Ohio State Injury Biomechanics Symposium
, Columbus, OH.http://ibrc.osu.edu/wp-content/uploads/2017/03/McNamara_IBS_v3.pdf
7.
Putnam
,
J.
,
Somers
,
J.
,
Wells
,
J.
,
Newby
,
N.
,
Currie-Gregg
,
N.
, and
Lawrence
,
C.
,
2016
, “
Evaluation of Mid-Size Male Hybrid III Models for Use in Spaceflight Occupant Protection Analysis
,”
Report
No. 20170009431.https://ntrs.nasa.gov/search.jsp?R=20170009431
8.
Putnam
,
J. B.
,
Somers
,
J. T.
,
Wells
,
J. A.
,
Perry
,
C. E.
, and
Untaroiu
,
C. D.
,
2015
, “
Development and Evaluation of a Finite Element Model of the THOR for Occupant Protection of Spaceflight Crewmembers
,”
Accid. Anal. Prev.
,
82
, pp.
244
256
.10.1016/j.aap.2015.05.002
9.
Russo
,
D.
,
Foley
,
T.
,
Stroud
,
K.
,
Connolly
,
J.
,
Tillman
,
B.
, and
Pickett
,
L.
,
2007
, “
NASA Space Flight Human System Standards
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
, 51(
21
), pp.
1468
1470
.10.1177/154193120705102105
10.
Vavalle
,
N. A.
,
Moreno
,
D. P.
,
Rhyne
,
A. C.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
497
512
.10.1007/s10439-012-0684-3
11.
Park
,
G.
,
Kim
,
T.
,
Crandall
,
J. R.
,
Dalmases
,
C.
A., and
Narro
,
B. J.
L.,
2013
, “
Comparison of Kinematics of GHBMC to PMHS on the Side Impact Condition
,”
IRCOBI Conference Proceedings
, Gothenburg, Sweden, Sept. 11–13, pp.
368
379
.http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/41.pdf
12.
Vavalle
,
N. A.
,
Davis
,
M. L.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2163
2174
.10.1007/s10439-015-1286-7
13.
Doud
,
A. N.
,
Weaver
,
A. A.
,
Talton
,
J. W.
,
Barnard
,
R. T.
,
Meredith
,
J. W.
,
Stitzel
,
J. D.
,
Miller
,
P.
, and
Miller
,
A. N.
,
2015
, “
Has the Incidence of Thoracolumbar Spine Injuries Increased in the United States From 1998 to 2011?
,”
Clin. Orthop. Relat. Res.
,
473
(
1
), pp.
297
304
.10.1007/s11999-014-3870-9
14.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Maiman
,
D. J.
,
Scarboro
,
M.
, and
Rudd
,
R. W.
,
2012
, “
Thoracolumbar Spine Fractures in Frontal Impact Crashes
,”
Annals of Advances in Automotive Medicine/Annual Scientific Conference
, Seattle, WA, Oct. 31, Association for the Advancement of Automotive Medicine, Vol.
56
, p.
277
.
15.
Wang
,
Z. L.
,
Teo
,
J. C.
,
Chui
,
C. K.
,
Ong
,
S. H.
,
Yan
,
C. H.
,
Wang
,
S. C.
,
Wong
,
H. K.
, and
Teoh
,
S. H.
,
2005
, “
Computational Biomechanical Modelling of the Lumbar Spine Using Marching-Cubes Surface Smoothened Finite Element Voxel Meshing
,”
Comput. Methods Programs Biomed.
,
80
(
1
), pp.
25
35
.10.1016/j.cmpb.2005.06.006
16.
Arun
,
M. W.
,
Hadagali
,
P.
,
Driesslein
,
K.
,
Curry
,
W.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2017
, “
Biomechanics of Lumbar Motion-Segments in Dynamic Compression
,”
Stapp Car Crash J.
,
61
, pp.
1
25
. https://www.ncbi.nlm.nih.gov/pubmed/29394433
17.
Williams
,
R.
,
Wilcutt
,
T.
, and
Roe
,
J. R.
,
2015
, “
NASA Space Flight Human System Standards
,”
NASA Standard No. 3001, National Aeronautics and Space Administration, Washington, DC, Vol.
2.
18.
Newby
,
N.
,
Somers
,
J. T.
,
Caldwell
,
E. E.
,
Perry
,
C.
,
Littell
,
J.
, and
Gernhardt
,
M.
,
2013
, “
Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data
,”
SAE
Paper No. 2013-22-0018.
19.
Somers
,
J.
,
Gernhardt
,
M.
, and
Newby
,
N.
,
2015
, “
Assessing the Risk of Crew Injury Due to Dynamic Loads During Spaceflight
,” Report No. 20140003734.
20.
Society of Automotive Engineers
,
2007
, “
J211-1 Instrumentation for Impact Test—Part 1—Electronic Instrumentation
,”
SAE
Paper No. J211/1_200707.
21.
Brinkley
,
J. W.
, and
Shaffer
,
J. T.
,
1971
, “
Dynamic Simulation Techniques for the Design of Escape Systems: Current Applications and Future Air Force Requirements
,” Air Force Aerospace Medical Research Laboratory, Wright-Patterson AFB, OH, Report No. AD0740439.
22.
Somers
,
J. T.
,
Newby
,
N. J.
,
Lawrence
,
C.
,
DeWeese
,
R. L.
,
Moorcroft
,
D.
, and
Phelps
,
S. E.
,
2014
, “
Investigation of the THOR Anthropomorphic Test Device for Predicting Occupant Injuries During Spacecraft Launch Aborts and Landing
,”
Front. Bioeng. Biotechnol.
,
2
, p. 4. 10.3389/fbioe.2014.00004
23.
Desjardins
,
S.
,
2008
, “
Establishing Lumbar Injury Tolerance for Energy Absorbing Seats-Criteria and Testing Limitations
,”
64th AHS Annual Forum
,, Vol.
29
, Montreal, QC, Canada, Apr. 29–May 1, pp.
1
16
.
24.
Association for the Advancement of Automotive Medicine,
1998
, “Abbreviated Injury Scale, 1990 Revision: Update 98,” Association for the Advancement of Automotive Medicine, Barrington, IL.
25.
Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., and Passos, A., 2011. “Scikit-Learn: Machine Learning in Python,”
J. Mach. Learn. Res.
, 12, pp. 2825–2830.http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
26.
Rapaport
,
M.
,
Forster
,
E.
,
Schoenbeck
,
A.
, and
Domzalski
,
L.
,
1997
, “
Establishing a Spinal Injury Criterion for Military Seats
,” Naval Air Warfare Center, Aircraft Division, Patuxent River, MD, Report No. 0704–0188.
27.
Somers
,
J. T.
,
Gohmert
,
D.
, and
Brinkley
,
J. W.
,
2017
, “
Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA/TP-2013-217380.
28.
Yoganandan
,
N.
,
Nahum
,
A. M.
, and
J. W.
Melvin
,
2014
,
Accidental Injury: Biomechanics and Prevention
,
Springer
, New York.
29.
Yoganandan
,
N.
,
Arun
,
M. W.
,
Stemper
,
B. D.
,
Pintar
,
F. A.
, and
Maiman
,
D. J.
,
2013
, “
Biomechanics of Human Thoracolumbar Spinal Column Trauma From Vertical Impact Loading
,”
Ann. Adv. Automot. Med
.
,
57
, pp.
155
–166.https://www.ncbi.nlm.nih.gov/pubmed/24406955
30.
Stemper
,
B. D.
,
Chirvi
,
S.
,
Doan
,
N.
,
Baisden
,
J. L.
,
Maiman
,
D. J.
,
Curry
,
W. H.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Paskoff
,
G.
, and
Shender
,
B. S.
,
2018
, “
Biomechanical Tolerance of Whole Lumbar Spines in Straightened Posture Subjected to Axial Acceleration
,”
J. Orthop. Res.
,
36
(
6
), pp.
1747
1756
.10.1002/jor.23826
31.
Stemper
,
B. D.
,
Storvik
,
S. G.
,
Yoganandan
,
N.
,
Baisden
,
J. L.
,
Fijalkowski
,
R. J.
,
Pintar
,
F. A.
,
Shender
,
B. S.
, and
Paskoff
,
G. R.
,
2011
, “
A New PMHS Model for Lumbar Spine Injuries During Vertical Acceleration
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081002
.10.1115/1.4004655
32.
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Baisden
,
J. L.
,
Pintar
,
F. A.
, and
Shender
,
B. S.
,
2012
, “
Rate-Dependent Failure Characteristics of Thoraco-Lumbar Vertebrae: Application to the Military Environment
,”
ASME
Paper No. SBC2012-80139. 10.1115/SBC2012-80139
33.
Ye
,
X.
,
Gaewsky
,
J. P.
,
Jones
,
D. A.
,
Miller
,
L. E.
,
Stitzel
,
J. D.
, and
Weaver
,
A. A.
,
2018
, “
Computational Modeling and Analysis of Thoracolumbar Spine Fractures in Frontal Crash Reconstruction
,”
Traffic Inj. Prev.
,
19
, pp.
S32
S39
.10.1080/15389588.2018.1498090
34.
Duma
,
S. M.
,
Kemper
,
A. R.
,
McNeely
,
D. M.
,
Brolinson
,
P. G.
, and
Matsuoka
,
F.
,
2006
, “
Biomechanical Response of the Lumbar Spine in Dynamic Compression
,”
Biomed. Sci. Instrum.
,
42
, pp.
476
481
. https://www.ncbi.nlm.nih.gov/pubmed/16817654
35.
Demetropoulos
,
C. K.
,
Yang
,
K. H.
,
Grimm
,
M. J.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
1998
, “
Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines
,”
SAE Trans.
,
107
, pp.
2862
2871
.
36.
Pellettiere
,
J. A.
,
Moorcroft
,
D.
, and
Olivares
,
G.
,
2011
, “
Anthropomorphic Test Dummy Lumbar Load Variation
,”
Enhanced Saf. Veh.
,
11-057
, pp.
1
10
.
37.
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2017
, “
Load-Based Lower Neck Injury Criteria for Females From Rear Impact From Cadaver Experiments
,”
Ann. Biomed. Eng.
,
45
(
5
), pp.
1194
1203
.10.1007/s10439-016-1773-5
38.
Lang
,
T.
,
LeBlanc
,
A.
,
Evans
,
H.
,
Lu
,
Y.
,
Genant
,
H.
, and
Yu
,
A.
,
2004
, “
Cortical and Trabecular Bone Mineral Loss From the Spine and Hip in Long-Duration Spaceflight
,”
J. Bone Miner. Res.
,
19
(
6
), pp.
1006
1012
.10.1359/JBMR.040307
39.
LeBlanc
,
A.
,
Lin
,
C.
,
Shackelford
,
L.
,
Sinitsyn
,
V.
,
Evans
,
H.
,
Belichenko
,
O.
,
Schenkman
,
B.
,
Kozlovskaya
,
I.
,
Oganov
,
V.
,
Bakulin
,
A.
,
Hedrick
,
T.
, and
Feeback
,
D.
,
2000
, “
Muscle Volume, MRI Relaxation Times (T2), and Body Composition After Spaceflight
,”
J. Appl. Physiol.
,
89
(
6
), pp.
2158
2164
.10.1152/jappl.2000.89.6.2158
40.
Adams
,
M. A.
, and
Roughley
,
P. J.
,
2006
, “
What Is Intervertebral Disc Degeneration, and What Causes It?
,”
Spine
,
31
(
18
), pp.
2151
2161
.10.1097/01.brs.0000231761.73859.2c
41.
Lam
,
T.
, and
Ivarsson
,
B. J.
,
2017
, “
Vehicle Rear Impacts and Spinal Disc Herniations in Occupants: Is There a Basis for Causation?
,”
SAE
Technical Paper No. 0148-7191. 10.4271/0148-7191
42.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
,
Roskies
,
R.
,
Scott
,
J. R.
, and
Wilkins-Diehr
,
N.
, 2014,
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
, 16(
5
), pp.
62
74
.10.1109/MCSE.2014.80
You do not currently have access to this content.