Abstract

To present the ligament effects on sacroiliac joint (SIJ) stability and human pelvis biomechanical characteristics in two different positions by using three-dimensional (3D) finite element (FE) models of pelvis. Based on the computed tomography (CT) data of human pelvis, three-dimensional FE models of human pelvis in sitting and standing positions were established, which include the bone (sacrum, ilium, and coccyx) and six ligaments (sacroiliac, sacrospinous, sacrotuberous, inguinal, superior pubic, and arcuate pubic ligaments). 600 N vertical load was applied at the upper surface of sacrum to analyze the stress and displacement distribution of pelvis and SIJ. The simulation results demonstrated that the maximum stresses of sacrum and ilium on SIJ contact surface were 5.63 MPa and 7.40 MPa in standing position and 7.44 MPa and 7.95 MPa in sitting position. The stresses of ligament dysfunction group were higher than that of health group, which increased by 22.6% and 35.7% in standing position and 25.2% and 43.6% in sitting position in sacrum and ilium. The maximum displacements located on the upper surface of sacrum, which were 0.13 mm and 1.04 mm in standing and sitting positions. Ligaments dysfunction group increased 30.7% and 9.6% than health group in standing and sitting positions. The integral displacement of pelvis was greater in sitting position. The location of stress concentration and displacement distribution of pelvic bone are closely resembled previous research results in two different positions. The simulation results may provide beneficial information and theoretical models for clinical research of pelvic fracture, joint movement, and ligament functional injuries, and so on.

References

1.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.10.1016/0021-9290(94)00125-N
2.
Zheng
,
N.
,
Watson
,
L. G.
, and
Yong-Hing
,
K.
,
1997
, “
Biomechanical Modelling of the Human Sacroiliac Joint
,”
Med. Biol. Eng. Comput.
,
35
(
2
), pp.
77
82
.10.1007/BF02534134
3.
Cohen
,
S. P.
,
2005
, “
Sacroiliac Joint Pain: A Comprehensive Review of Anatomy, Diagnosis, and Treatment
,”
Anesth. Analg.
,
101
(
5
), pp.
1440
1453
.10.1213/01.ANE.0000180831.60169.EA
4.
Daly
,
J. M.
,
Frame
,
P. S.
, and
Rapoza
,
P. A.
,
1991
, “
Sacroiliac Subluxation: A Common, Treatable Cause of Low-Back Pain in Pregnancy
,”
Fam. Pract. Res. J.
,
11
(
2
), pp.
149
159
.
5.
Schwarzer
,
A. C.
,
Aprill
,
C. N.
, and
Bogduk
,
N.
,
1995
, “
The Sacroiliac Joint in Chronic Low Back Pain
,”
Spine
,
20
(
1
), pp.
31
37
.10.1097/00007632-199501000-00007
6.
Hancock
,
M. J.
,
Maher
,
C. G.
,
Latimer
,
J.
,
Spindler
,
M. F.
,
Mcauley
,
J. H.
,
Laslett
,
M.
, and
Bogduk
,
N.
,
2007
, “
Systematic Review of Tests to Identify the Disc, Sij or Facet Joint as the Source of Low Back Pain
,”
Eur. Spine J.
,
16
(
10
), pp.
1539
1550
.10.1007/s00586-007-0391-1
7.
Hoffman
,
M. D.
, and
Agnish
,
V.
,
2018
, “
Functional Outcome From Sacroiliac Joint Prolotherapy in Patients With Sacroiliac Joint Instability
,”
Complementary Ther. Med.
,
37
, pp.
64
68
.10.1016/j.ctim.2018.01.014
8.
Conza
,
N. E.
,
Rixen
,
D. J.
, and
Plomp
,
S.
,
2007
, “
Vibration Testing of a Fresh-Frozen Human Pelvis: The Role of the Pelvic Ligaments
,”
J. Biomech.
,
40
(
7
), pp.
1599
1605
.10.1016/j.jbiomech.2006.07.001
9.
Salo
,
Z.
,
Beek
,
M.
,
Wright
,
D.
,
Maloul
,
A.
, and
Whyne
,
C. M.
,
2017
, “
Analysis of Pelvic Strain in Different Gait Configurations in a Validated Cohort of Computed Tomography Based Finite Element Models
,”
J. Biomech.
,
64
, pp.
120
130
.10.1016/j.jbiomech.2017.09.014
10.
Sichting
,
F.
,
Rossol
,
J.
,
Soisson
,
O.
,
Klima
,
S.
,
Milani
,
T.
, and
Hammer
,
N.
,
2014
, “
Pelvic Belt Effects on Sacroiliac Joint Ligaments: A Computational Approach to Understand Therapeutic Effects of Pelvic Belts. Pain Physician
,”
Pain Phys.
,
17
(
1
), pp.
43
51
.10.1097/AAP.0000000000000025
11.
Shi
,
D.
,
Wang
,
F.
,
Wang
,
D.
,
Li
,
X.
, and
Wang
,
Q.
,
2014
, “
3-d Finite Element Analysis of the Influence of Synovial Condition in Sacroiliac Joint on the Load Transmission in Human Pelvic System
,”
Med. Eng. Phys.
,
36
(
6
), pp.
745
753
.10.1016/j.medengphy.2014.01.002
12.
Phillips
,
A. T. M.
,
Pankaj
,
P.
,
Howie
,
C. R.
,
Usmani
,
A. S.
, and
Simpson
,
A. H. R. W.
,
2007
, “
Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions
,”
Med. Eng. Phys.
,
29
(
7
), pp.
739
748
.10.1016/j.medengphy.2006.08.010
13.
Wang
,
M.
, and
Dumas
,
G. A.
,
1998
, “
Mechanical Behavior of the Female Sacroiliac Joint and Influence of the Anterior and Posterior Sacroiliac Ligaments Under Sagittal Loads
,”
Clin. Biomech.
,
13
(
4–5
), pp.
293
299
.10.1016/S0268-0033(98)00088-6
14.
Hammer
,
N.
,
Steinke
,
H.
,
Lingslebe
,
U.
,
Bechmann
,
I.
,
Josten
,
C.
,
Slowik
,
V.
, and
BöHme
,
J.
,
2013
, “
Ligamentous Influence in Pelvic Load Distribution
,”
Spine. J.
,
13
(
10
), pp.
1321
1330
.10.1016/j.spinee.2013.03.050
15.
Zhao
,
Y.
,
Zhang
,
S.
,
Sun
,
T.
,
Wang
,
D.
,
Lian
,
W.
,
Tan
,
J.
,
Zou
,
D.
, and
Zhao
,
Y.
,
2013
, “
Mechanical Comparison Between Lengthened and Short Sacroiliac Screws in Sacral Fracture Fixation: A Finite Element Analysis
,”
Orthop. Traumatol. Surg. Res.
,
99
(
5
), pp.
601
606
.10.1016/j.otsr.2013.03.023
16.
Tan
,
J.
,
Mu
,
M.
,
Liao
,
G.
,
Zhao
,
Y.
, and
Li
,
J.
,
2015
, “
Biomechanical Analysis of the Annular Ligament in Monteggia Fractures Using Finite Element Models
,”
J. Orthop. Res.
,
10
(
1
), pp.
1
6
.10.1186/s13018-015-0170-3
17.
Böhme
,
J.
,
Lingslebe
,
U.
,
Steinke
,
H.
,
Werner
,
M.
,
Slowik
,
V.
,
Josten
,
C.
, and
Hammer
,
N.
,
2014
, “
The Extent of Ligament Injury and Its Influence on Pelvic Stability Following Type II Anteroposterior Compression Pelvic Injuries—A Computer Study to Gain Insight Into Open Book Trauma
,”
J. Orthop. Res.
,
32
(
7
), pp.
873
879
.10.1002/jor.22618
18.
Lee
,
C. H.
,
Hsu
,
C. C.
, and
Huang
,
P. Y.
,
2017
, “
Biomechanical Study of Different Fixation Techniques for the Treatment of Sacroiliac Joint Injuries Using Finite Element Analyses and Biomechanical Tests
,”
Comput. Biol. Med.
,
99
(
5
), pp.
601
606
.10.1016/j.compbiomed.2017.06.007
19.
Hu
,
P.
,
Wu
,
T.
,
Wang
,
H-Z.
,
Qi
,
X-Z.
,
Yao
,
J.
,
Cheng
,
X-D.
,
Chen
,
W.
, and
Zhang
,
Y-Z.
,
2017
, “
Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission
,”
Orthop. Surg.
,
9
(
1
), pp.
115
122
.10.1111/os.12315
20.
Watson
,
P. J.
,
Dostanpor
,
A.
,
Fagan
,
M. J.
, and
Dobson
,
C. A.
,
2017
, “
The Effect of Boundary Constraints on Finite Element Modelling of the Human Pelvis
,”
Med. Eng. Phys.
,
43
, pp.
48
57
.10.1016/j.medengphy.2017.02.001
21.
Zhang
,
L.
,
Peng
,
Y.
,
Du
,
C.
, and
Tang
,
P.
,
2014
, “
Biomechanical Study of Four Kinds of Percutaneous Screw Fixation in Two Types of Unilateral Sacroiliac Joint Dislocation: A Finite Element Analysis
,”
Injury
,
45
(
12
), pp.
2055
2059
.10.1016/j.injury.2014.10.052
22.
Ming
,
S. L.
,
Mei
,
D. W.
,
Li
,
A. Q.
,
Qian
,
W.
, and
Gen
,
Q. W.
,
2016
, “
Biomechanics Effect of Screw-Rod Internal Fixation for Tile B2 Pelvic Fractures
,”
J. Med. Biomech.
,
31
(
3
), pp.
240
246
.10.3871/j.1004-7220.2016.03.240
23.
Dalstra
,
M.
,
Huiskes
,
R.
, and
Erning
,
L. V.
,
1995
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
278
.10.1115/1.2794181
24.
Hao
,
Z.
,
Wan
,
C.
,
Gao
,
X.
, and
Ji
,
T.
,
2011
, “
The Effect of Boundary Condition on the Biomechanics of a Human Pelvic Joint Under an Axial Compressive Load: A Three-Dimensional Finite Element Model
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101006
.10.1115/1.4005223
25.
Varga
,
E.
,
Dudas
,
B.
, and
Tile
,
M.
,
2008
, “
Putative Proprioceptive Function of the Pelvic Ligaments: Biomechanical and Histological Studies
,”
Inj.-Int. J. Care Inj.
,
39
(
8
), pp.
858
864
.10.1016/j.injury.2008.01.017
26.
Miller
,
J. A. A.
,
Schultz
,
A. B.
, and
Andersson
,
G. B. J.
,
1987
, “
Load-Displacement Behavior of Sacroiliac Joints
,”
J. Orthop. Res.
,
5
(
1
), pp.
92
101
.10.1002/jor.1100050112
27.
Albert
,
H.
,
Godskesen
,
M.
, and
Westergaard
,
J.
,
2001
, “
Prognosis in Four Syndromes of Pregnancy-Related Pelvic Pain
,”
Acta Obstet. Gynecol. Scand.
,
80
(
6
), pp.
505
510
.10.1080/j.1600-0412.2001.080006505.x
28.
Eichenseer
,
P. H.
,
Sybert
,
D. R.
, and
Cotton
,
J. R.
,
2011
, “
A Finite Element Analysis of Sacroiliac Joint Ligaments in Response to Different Loading Conditions
,”
Spine
,
36
(
22
), pp.
E1446
E1452
.10.1097/BRS.0b013e31820bc705
29.
Abdelfattah
,
A.
, and
Moed
,
B. R.
,
2014
, “
Ligamentous Contributions to Pelvic Stability in a Rotationally Unstable Open-Book Injury: A Cadaver Study
,”
Injury
,
45
(
10
), pp.
1599
1603
.10.1016/j.injury.2014.05.026
30.
Pedersen
,
D. R.
,
Brand
,
R. A.
, and
Davy
,
D. T.
,
1997
, “
Pelvic Muscle and Acetabular Contact Forces During Gait
,”
J. Biomech.
,
30
(
9
), pp.
959
965
.10.1016/S0021-9290(97)00041-9
31.
Volinski
,
B.
,
Kalra
,
A.
, and
Yang
,
K.
,
2018
, “
Evaluation of Full Pelvic Ring Stresses Using a Bilateral Static Gait-Phase Finite Element Modeling Method
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
175
187
.10.1016/j.jmbbm.2017.11.006
32.
Leung
,
A. S.
,
Gordon
,
L. M.
,
Skrinskas
,
T.
,
Szwedowski
,
T.
, and
Whyne
,
C. M.
,
2009
, “
Effects of Bone Density Alterations on Strain Patterns in the Pelvis: Application of a Finite Element Model
,”
Proc. Inst. Mech. Eng. H
,
223
(
8
), pp.
965
979
.10.1243/09544119JEIM618
33.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.10.1016/1350-4533(95)97314-F
34.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
,
2005
, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.10.1115/1.1894148
35.
Mclauchlan
,
G. J.
, and
Gardner
,
D. L.
,
2002
, “
Sacral and Iliac Articular Cartilage Thickness and Cellularity: Relationship to Subchondral Bone End-Plate Thickness and Cancellous Bone Density
,”
Rheumatology
,
41
(
4
), pp.
375
380
.10.1093/rheumatology/41.4.375
36.
Jacob
,
H. A. C.
,
Huggler
,
A. H.
,
Dietschi
,
C.
, and
Schreiber
,
A.
,
1976
, “
Mechanical Function of Subchondral Bone as Experimentally Determined on the Acetabulum of the Human Pelvis
,”
J Biomech.
,
9
(
10
), pp.
625
627
.10.1016/0021-9290(76)90103-2
37.
Kuszewski
,
M. T.
,
Gnat
,
R.
, and
Gogola
,
A.
,
2018
, “
The Impact of Core Muscles Training on the Range of Anterior Pelvic Tilt in Subjects With Increased Stiffness of the Hamstrings
,”
Hum. Mov. Sci
,
57
, pp.
32
39
.10.1016/j.humov.2017.11.003
38.
Habib
,
F. I.
,
Corazziari
,
E.
,
Viscardi
,
A.
,
Badiali
,
D.
, and
Torsoli
,
A.
,
1992
, “
Role of Body Position, Gender, and Age on Pelvic Floor Location and Mobility
,”
Dig. Dis. Sci.
,
37
(
4
), pp.
500
505
.10.1007/BF01307570
39.
Salsich
,
G. B.
,
Heiden
,
T. L.
, and
Graci
,
V.
,
2012
, “
Gender Differences in Trunk, Pelvis and Lower Limb Kinematics During a Single Leg Squat
,”
Gait Posture
,
36
(
3
), pp.
461
466
.10.1016/j.gaitpost.2012.04.006
You do not currently have access to this content.