Abstract

Biofluids comprises a core topical domain for modern biomedical engineering education. Like other biomedical topic areas, biofluids education must address highly interdisciplinary and applied topics. Concept/problem-based active learning approaches can provide effective avenues to teach such diverse and applied topics. However, with the heterogeneity within biofluids topics across cellular, physiological, and/or extra-organismal scales, it is important to develop active learning content that enables students to explore concepts with appropriate context. This challenge is further complicated by the need to administer such content remotely (due to the Covid-19 pandemic). Here, we outline our design process and implementation experience for simulation-based active learning modules for a newly developed physiological biofluids course. We share the overall design approach, with two example cases of simulation-based concept exploration: (a) arterial Windkessel effects and lumped parameter hemodynamic analysis; and (b) curvature-induced helical flow in human aorta illustrated using four-dimensional (4D) flow magnetic resonance imaging (MRI). Evidence from student survey ratings, student comments and feedback, and monitoring student performance for course deliverables indicate positive student response toward these modules, and efficacy of the modules in enabling student learning. Based on our design and implementation experience, we argue that simulation-based approaches can enable active learning of biofluids through remote and online learning modalities.

References

1.
Linsenmeier
,
R. A.
, and
Saterbak
,
A.
,
2020
, “
Fifty Years of Biomedical Engineering Undergraduate Education
,”
Ann. Biomed. Eng.
,
48
(
6
), pp.
1590
1615
.10.1007/s10439-020-02494-0
2.
Harris
,
T. R.
, and
Brophy
,
S. P.
,
2005
, “
Challenge-Based Instruction in Biomedical Engineering: A Scalable Method to Increase the Efficiency and Effectiveness of Teaching and Learning in Biomedical Engineering
,”
Med. Eng. Phys.
,
27
(
7
), pp.
617
624
.10.1016/j.medengphy.2004.11.013
3.
Kim
,
A. M.
,
Speed
,
C. J.
, and
Macaulay
,
J. O.
,
2019
, “
Barriers and Strategies: Implementing Active Learning in Biomedical Science Lectures
,”
Biochem. Mol. Biol. Educ.
,
47
(
1
), pp.
29
40
.10.1002/bmb.21190
4.
Nelson
,
R. K.
,
Chesler
,
N. C.
, and
Strang
,
K. T.
,
2013
, “
Development of Concept-Based Physiology Lessons for Biomedical Engineering Undergraduate Students
,”
Adv. Physiol. Educ.
,
37
(
2
), pp.
176
183
.10.1152/advan.00038.2012
5.
Mukherjee
,
D.
,
2021
, “
Developing Effective Screencast Modules for Teaching Computational Techniques in Remote Modalities
,”
Biomed. Eng. Educ.
,
1
(
2
), p.
307
.10.1007/s43683-020-00044-7
6.
Clyne
,
A. M.
, and
Billiar
,
K. L.
,
2016
, “
Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies
,”
ASME J. Biomech. Eng.
,
138
(
7
), p. 070804.10.1115/1.4033671
7.
Bluestein
,
D.
, and
Moore
,
J. E.
,
2005
, “
Biofluids Educational Issues: An Emerging Field Aims to Define Its Next Generation
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1674
1680
.10.1007/s10439-005-8757-1
8.
Marinoni
,
G.
,
Van't Land
,
H.
, and
Jensen
,
T.
,
2020
, “
The Impact of Covid-19 on Higher Education Around the World
,” IAU Global Survey, International Association of Universities, Paris, France, Report.https://www.iauaiu.net/IMG/pdf/iau_covid19_and_he_survey_report_final_may_2020.pdf
9.
Bernard
,
R. M.
,
Abrami
,
P. C.
,
Borokhovski
,
E.
,
Wade
,
C. A.
,
Tamim
,
R. M.
,
Surkes
,
M. A.
, and
Bethel
,
E. C.
,
2009
, “
A Meta-Analysis of Three Types of Interaction Treatments in Distance Education
,”
Rev. Educ. Res.
,
79
(
3
), pp.
1243
1289
.10.3102/0034654309333844
10.
Prince
,
M.
,
Felder
,
R.
, and
Brent
,
R.
,
2020
, “
Active Student Engagement in Online Stem Classes: Approaches and Recommendations
,”
Adv. Eng. Educ.
,
8
(
4
), pp.
1
25
.https://advances.asee.org/activestudent-engagement-in-online-stem-classes-approaches-and-recommendations/
11.
Freeman
,
S.
,
Eddy
,
S. L.
,
McDonough
,
M.
,
Smith
,
M. K.
,
Okoroafor
,
N.
,
Jordt
,
H.
, and
Wenderoth
,
M. P.
,
2014
, “
Active Learning Increases Student Performance in Science, Engineering, and Mathematics
,”
Proc. Natl. Acad. Sci.
,
111
(
23
), pp.
8410
8415
.10.1073/pnas.1319030111
12.
Michael
,
J.
,
2006
, “
Where's the Evidence That Active Learning Works?
,”
Adv. Physiol. Educ.
,
30
(
4
), pp.
159
167
.10.1152/advan.00053.2006
13.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
Simvascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
14.
Arts
,
T.
,
Delhaas
,
T.
,
Bovendeerd
,
P.
,
Verbeek
,
X.
, and
Prinzen
,
F. W.
,
2005
, “
Adaptation to Mechanical Load Determines Shape and Properties of Heart and Circulation: The Circadapt Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
4
), pp.
H1943
H1954
.10.1152/ajpheart.00444.2004
15.
Horos Project
, 2021, “Horos Project,” accessed Nov. 17, 2021, https://horosproject.org/
16.
Paraview
,
2020
, “Paraview,” Kitware, Inc., Clifton Park, New York, accessed Nov. 17, 2021, https://www.paraview.org/
17.
Radiopaedia
,
2020
, “Radiopaedia,” accessed Nov. 17, 2021, https://radiopaedia.org/
18.
Segers
,
P.
,
Rietzschel
,
E.
,
De Buyzere
,
M.
,
Stergiopulos
,
N.
,
Westerhof
,
N.
,
Van Bortel
,
L.
,
Gillebert
,
T.
, and
Verdonck
,
P.
,
2008
, “
Three-and Four-Element Windkessel Models: Assessment of Their Fitting Performance in a Large Cohort of Healthy Middle-Aged Individuals
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
222
(
4
), pp.
417
428
.10.1243/09544119JEIM287
19.
Stergiopulos
,
N.
,
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
1999
, “
Total Arterial Inertance as the Fourth Element of the Windkessel Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
276
(
1
), pp.
H81
H88
.10.1152/ajpheart.1999.276.1.H81
20.
Stankovic
,
Z.
,
Allen
,
B. D.
,
Garcia
,
J.
,
Jarvis
,
K. B.
, and
Markl
,
M.
,
2014
, “
4D Flow Imaging With MRI
,”
Cardiovasc. Diagn. Therapy
,
4
(
2
), pp.
173
192
.10.3978/j.issn.2223-3652.2014.01.02
21.
Dyverfeldt
,
P.
,
Bissell
,
M.
,
Barker
,
A. J.
,
Bolger
,
A. F.
,
Carlhäll
,
C.-J.
,
Ebbers
,
T.
,
Francios
,
C. J.
,
Frydrychowicz
,
A.
,
Geiger
,
J.
,
Giese
,
D.
,
Hope
,
M. D.
,
Kilner
,
P. J.
,
Kozerke
,
S.
,
Myerson
,
S.
,
Neubauer
,
S.
,
Wieben
,
O.
, and
Markl
,
M.
,.
2015
, “
4D Flow Cardiovascular Magnetic Resonance Consensus Statement
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), pp.
1
19
.10.1186/s12968-015-0174-5
22.
Bybee
,
R. W.
,
2010
, “
Advancing Stem Education: A 2020 Vision
,”
Technol. Eng. Teacher
,
70
(
1
), p.
30
.https://eric.ed.gov/?id=EJ898909
23.
Sevian
,
H.
,
Dori
,
Y. J.
, and
Parchmann
,
I.
,
2018
, “
How Does Stem Context-Based Learning Work: What We Know and What We Still Do Not Know
,”
Int. J. Sci. Educ.
,
40
(
10
), pp.
1095
1107
.10.1080/09500693.2018.1470346
24.
Sweller
,
J.
,
Van Merrienboer
,
J. J.
, and
Paas
,
F. G.
,
1998
, “
Cognitive Architecture and Instructional Design
,”
Educ. Psychol. Rev.
,
10
(
3
), pp.
251
296
.10.1023/A:1022193728205
25.
Sweller
,
J.
,
van Merriënboer
,
J. J.
, and
Paas
,
F.
,
2019
, “
Cognitive Architecture and Instructional Design: 20 Years Later
,”
Educ. Psychol. Rev.
,
31
(
2
), pp.
261
232
.10.1007/s10648-019-09465-5
26.
Krathwohl
,
D. R.
,
2002
, “
A Revision of Bloom's Taxonomy: An Overview
,”
Theory Pract.
,
41
(
4
), pp.
212
218
.10.1207/s15430421tip4104_2
27.
Miller
,
C. J.
, and
Metz
,
M. J.
,
2014
, “
A Comparison of Professional-Level Faculty and Student Perceptions of Active Learning: Its Current Use, Effectiveness, and Barriers
,”
Adv. Physiol. Educ.
,
38
(
3
), pp.
246
252
.10.1152/advan.00014.2014
28.
Orlov
,
G.
,
McKee
,
D.
,
Berry
,
J.
,
Boyle
,
A.
,
DiCiccio
,
T.
,
Ransom
,
T.
,
Rees-Jones
,
A.
, and
Stoye
,
J.
,
2021
, “
Learning During the Covid-19 Pandemic: It is Not Who You Teach, But How You Teach
,”
Econ. Lett.
,
202
, p.
109812
.10.1016/j.econlet.2021.109812
You do not currently have access to this content.