Abstract

Pulse wave imaging (PWI) is an ultrasound-based method that allows spatiotemporal mapping of the arterial pulse wave propagation, from which the local pulse wave velocity (PWV) can be derived. Recent reports indicate that PWI can help the assessment of atherosclerotic plaque composition and mechanical properties. However, the effect of the atherosclerotic plaque's geometry and mechanics on the arterial wall distension and local PWV remains unclear. In this study, we investigated the accuracy of a finite element (FE) fluid–structure interaction (FSI) approach to predict the velocity of a pulse wave propagating through a stenotic artery with an asymmetrical plaque, as quantified with PWI method. Experiments were designed to compare FE-FSI modeling of the pulse wave propagation through a stenotic artery against PWI obtained with manufactured phantom arteries made of polyvinyl alcohol (PVA) material. FSI-generated spatiotemporal maps were used to estimate PWV at the plaque region and compared it to the experimental results. Velocity of the pulse wave propagation and magnitude of the wall distension were correctly predicted with the FE analysis. In addition, findings indicate that a plaque with a high degree of stenosis (>70%) attenuates the propagation of the pulse pressure wave. Results of this study support the validity of the FE-FSI methods to investigate the effect of arterial wall structural and mechanical properties on the pulse wave propagation. This modeling method can help to guide the optimization of PWI to characterize plaque properties and substantiate clinical findings.

References

1.
Fujikura
,
K.
,
Luo
,
J.
,
Gamarnik
,
V.
,
Pernot
,
M.
,
Fukumoto
,
R.
,
Tilson
,
M. D.
, III
, and
Konofagou
,
E. E.
,
2007
, “
A Novel, Non-Invasive Technique for Pulse-Wave Imaging and Characterization of Clinically Significant Vascular Mechanical Properties In Vivo
,”
Ultrason. Imaging
,
29
(
3
), pp.
137
154
.10.1177/016173460702900301
2.
Luo
,
J.
,
Fujikura
,
K.
,
Tyrie
,
L. S.
,
Tilson
,
M. D.
, III
, and
Konofagou
,
E. E.
,
2009
, “
Pulse Wave Imaging of Normal and Aneurysmal Abdominal Aortas In Vivo
,”
IEEE Trans. Med. Imaging
,
28
, pp.
477
486
.10.1109/TMI.2008.928179
3.
Vappou
,
J.
,
Luo
,
J.
, and
Konofagou
,
E. E.
,
2010
, “
Pulse Wave Imaging for Non-Invasive and Quantitative Measurement of Arterial Stiffness In Vivo
,”
Am. J. Hypertens.
,
23
(
4
), pp.
393
398
.10.1038/ajh.2009.272
4.
Apostolakis
,
I.-Z.
,
McGarry
,
M.
,
Bunting
,
E. A.
, and
Konofagou
,
E. E.
,
2017
, “
Pulse Wave Imaging Using Coherent Compounding in a Phantom and In Vivo
,”
Phys. Med. Biol.
,
62
(
5
), pp.
1700
1730
.10.1088/1361-6560/aa553a
5.
Majdouline
,
Y.
,
Ohayon
,
J.
,
Keshavarz-Motamed
,
Z.
,
Roy Cardinal
,
M.-H.
,
Garcia
,
D.
,
Allard
,
L.
,
Lerouge
,
S.
,
Arsenault
,
F.
,
Soulez
,
G.
, and
Cloutier
,
G.
,
2014
, “
Endovascular Shear Strain Elastography for the Detection and Characterization of the Severity of Atherosclerotic Plaques: In Vitro Validation and In Vivo Evaluation
,”
Ultrasound Med. Biol.
,
40
(
5
), pp.
890
903
.10.1016/j.ultrasmedbio.2013.12.008
6.
Czernuszewicz
,
T. J.
,
Homeister
,
J. W.
,
Caughey
,
M. C.
,
Farber
,
M. A.
,
Fulton
,
J. J.
,
Ford
,
P. F.
,
Marston
,
W. A.
,
Vallabhaneni
,
R.
,
Nichols
,
T. C.
, and
Gallippi
,
C. M.
,
2015
, “
Non-Invasive In Vivo Characterization of Human Carotid Plaques With Acoustic Radiation Force Impulse Ultrasound: Comparison With Histology After Endarterectomy
,”
Ultrasound Med. Biol.
,
41
(
3
), pp.
685
697
.10.1016/j.ultrasmedbio.2014.09.016
7.
Widman
,
E.
,
Maksuti
,
E.
,
Larsson
,
D.
,
Urban
,
M. W.
,
Bjällmark
,
A.
, and
Larsson
,
M.
,
2015
, “
Shear Wave Elastography Plaque Characterization With Mechanical Testing Validation: A Phantom Study
,”
Phys. Med. Biol.
,
60
(
8
), pp.
3151
3174
.10.1088/0031-9155/60/8/3151
8.
Lechareas
,
S.
,
Yanni
,
A. E.
,
Golemati
,
S.
,
Chatziioannou
,
A.
, and
Perrea
,
D.
,
2016
, “
Ultrasound and Biochemical Diagnostic Tools for the Characterization of Vulnerable Carotid Atherosclerotic Plaque
,”
Ultrasound Med. Biol.
,
42
(
1
), pp.
31
43
.10.1016/j.ultrasmedbio.2015.09.003
9.
Li
,
R. X.
,
Apostolakis
,
I. Z.
,
Kemper
,
P.
,
McGarry
,
M. D. J.
,
Ip
,
A.
,
Connolly
,
E. S.
,
McKinsey
,
J. F.
, and
Konofagou
,
E. E.
,
2019
, “
Pulse Wave Imaging in Carotid Artery Stenosis Human Patients In Vivo
,”
Ultrasound Med. Biol.
,
45
(
2
), pp.
353
366
.10.1016/j.ultrasmedbio.2018.07.013
10.
Apostolakis
,
I.-Z.
,
Nandlall
,
S. D.
, and
Konofagou
,
E. E.
,
2016
, “
Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo
,”
IEEE Trans. Med. Imaging
,
35
(
1
), pp.
13
28
.10.1109/TMI.2015.2453194
11.
Swillens
,
A.
,
Taelman
,
L.
,
Degroote
,
J.
,
Vierendeels
,
J.
, and
Segers
,
P.
,
2013
, “
Comparison of Non-Invasive Methods for Measurement of Local Pulse Wave Velocity Using FSI-Simulations and In Vivo Data
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1567
1578
.10.1007/s10439-012-0688-z
12.
Nauleau
,
P.
,
Apostolakis
,
I.-Z.
,
McGarry
,
M.
, and
Konofagou
,
E. E.
,
2018
, “
Cross-Correlation Analysis of Pulse Wave Propagation in Arteries: In Vitro Validation and In Vivo Feasibility
,”
Phys. Med. Biol.
,
63
(
11
), p.
115006
.10.1088/1361-6560/aabe57
13.
Shahmirzadi
,
D.
, and
Konofagou
,
E. E.
,
2014
, “
Quantification of Arterial Wall Inhomogeneity Size, Distribution, and Modulus Contrast Using FSI Numerical Pulse Wave Propagation
,”
Artery Res.
,
8
(
2
), pp.
57
65
.10.1016/j.artres.2014.01.006
14.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
, and
Vito
,
R. P.
,
2003
, “
Effect of Stenosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1182
1193
.10.1114/1.1615577
15.
Kock
,
S. A.
,
Nygaard
,
J. V.
,
Eldrup
,
N.
,
Fründ
,
E.-T.
,
Klærke
,
A.
,
Paaske
,
W. P.
,
Falk
,
E.
, and
Yong Kim
,
W.
,
2008
, “
Mechanical Stresses in Carotid Plaques Using MRI-Based Fluid–Structure Interaction Models
,”
J. Biomech.
,
41
(
8
), pp.
1651
1658
.10.1016/j.jbiomech.2008.03.019
16.
Lee
,
S. H.
,
Kang
,
S.
,
Hur
,
N.
, and
Jeong
,
S.-K.
,
2012
, “
A Fluid-Structure Interaction Analysis on Hemodynamics in Carotid Artery Based on Patient-Specific Clinical Data
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3821
3831
.10.1007/s12206-012-1008-0
17.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
18.
Shim
,
J. J.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2019a
, “
A Formulation for Fluid Structure-Interactions in FEBio Using Mixture Theory
,”
ASME J. Biomech. Eng.
,
141
(
5
), p.
051010
.10.1115/1.4043031
19.
Shim
,
J. J.
,
Gatti
,
V.
,
Nauleau
,
P.
,
Karageorgos
,
G.
,
Konofagou
,
E. E.
, and
Ateshian
,
G. A.
,
2019b
, “
Modeling Pulse Wave Propagation for Idealized and Physiological Arteries With Fluid-Structure Interactions in FEBio
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference
,
Seven Springs, PA
, June 25–28, p.
SSB3C2019–P066
.
20.
Greenshields
,
C. J.
, and
Weller
,
H. G.
,
2005
, “
A Unified Formulation for Continuum Mechanics Applied to Fluid–Structure Interaction in Flexible Tubes
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1575
1593
.10.1002/nme.1409
21.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Zhang
,
Y.
, and
Hughes
,
T. J.
,
2006
, “
Isogeometric Fluid–Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
(
4–5
), pp.
310
322
.10.1007/s00466-006-0084-3
22.
Chee
,
A. J. Y.
,
Ho
,
C. K.
,
Yiu
,
B. Y. S.
, and
Yu
,
A. C. H.
,
2016
, “
Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
63
(
11
), pp.
1852
1864
.10.1109/TUFFC.2016.2591946
23.
Galluzzo
,
F.
,
Leonardo
,
F.
,
Ceruti
,
A.
,
Marchi
,
L. D.
, and
Corsi
,
C.
,
2015
, “
Design of Anthropomorphic Atherosclerotic Carotid Artery Flow Phantoms for Ultrasound Images
,”
Presented at the Computing in Cardiology Conference (CinC)
,
Nice, France
, Sept. 6–9, pp.
721
724
.10.1109/CIC.2015.7411012
24.
Holdsworth
,
D. W.
,
Rickey
,
D. W.
,
Drangova
,
M.
,
Miller
,
D. J. M.
, and
Fenster
,
A.
,
1991
, “
Computer-Controlled Positive Displacement Pump for Physiological Flow Simulation
,”
Med. Biol. Eng. Comput.
,
29
(
6
), pp.
565
570
.10.1007/BF02446086
25.
Taylor
,
K. J. W.
,
1988
, “
Clinical Applications of Carotid Doppler Ultrasound
,”
Clinical Applications of Doppler Ultrasound
,
K. J. W.
Taylor
,
P. N.
Burns
, and
P. N. T.
Well
, eds.,
Raven Press,
New York
, pp.
120
161
.
26.
Luo
,
J.
, and
Konofagou
,
E. E.
,
2010
, “
A Fast Normalized Cross-Correlation Calculation Method for Motion Estimation
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
57
, pp.
1347
1357
.10.1109/TUFFC.2010.1554
27.
Luo
,
J.
,
Li
,
R. X.
, and
Konofagou
,
E. E.
,
2012
, “
Pulse Wave Imaging of the Human Carotid Artery: An In Vivo Feasibility Study
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
59
, pp.
174
181
.10.1109/TUFFC.2012.2170
28.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. A
,
328
(
1575
), pp.
565
584
.10.1098/rspa.1972.0096
29.
Bathe
,
M.
, and
Kamm
,
R. D.
,
1999
, “
A Fluid–Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
,
121
(
4
), pp.
361
369
.10.1115/1.2798332
30.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
,
2000
, “
Influence of Stenosis Morphology on Flow Through Severely Stenotic Vessels: Implications for Plaque Rupture
,”
J. Biomech.
,
33
(
4
), pp.
443
455
.10.1016/S0021-9290(99)00207-9
31.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
,
2004
, “
Effect of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3-D Fluid-Structure Interactions (FSI) Models
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
363
370
.10.1115/1.1762898
32.
Konala
,
B. C.
,
Das
,
A.
, and
Banerjee
,
R. K.
,
2011
, “
Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters
,”
J. Biomech.
,
44
(
5
), pp.
842
847
.10.1016/j.jbiomech.2010.12.011
33.
Hansen
,
H. H. G.
,
de Borst
,
G. J.
,
Bots
,
M. L.
,
Moll
,
F. L.
,
Pasterkamp
,
G.
, and
de Korte
,
C. L.
,
2016
, “
Validation of Noninvasive In Vivo Compound Ultrasound Strain Imaging Using Histologic Plaque Vulnerability Features
,”
Stroke
,
47
(
11
), pp.
2770
2775
.10.1161/STROKEAHA.116.014139
34.
Vlachopoulos
,
C.
,
O'Rourke
,
M.
, and
Nichols
,
W. W.
,
2011
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
CRC Press
,
Boca Raton, FL
.
35.
De Wilde
,
D.
,
Trachet
,
B.
,
Debusschere
,
N.
,
Iannaccone
,
F.
,
Swillens
,
A.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
De Meyer
,
G. R. Y.
, and
Segers
,
P.
,
2016
, “
Assessment of Shear Stress Related Parameters in the Carotid Bifurcation Using Mouse-Specific FSI Simulations
,”
J. Biomech.
,
49
(
11
), pp.
2135
2142
.10.1016/j.jbiomech.2015.11.048
36.
Shahmirzadi
,
D.
,
Li
,
R. X.
, and
Konofagou
,
E. E.
,
2012
, “
Pulse-Wave Propagation in Straight-Geometry Vessels for Stiffness Estimation: Theory, Simulations, Phantoms and In Vitro Findings
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
114502
.10.1115/1.4007747
37.
Bluestein
,
D.
,
Gutierrez
,
C.
,
Londono
,
M.
, and
Schoephoerster
,
R. T.
,
1999
, “
Vortex Shedding in Steady Flow Through a Model of an Arterial Stenosis and Its Relevance to Mural Platelet Deposition
,”
Ann. Biomed. Eng.
,
27
(
6
), pp.
763
773
.10.1114/1.230
38.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Atkinson
,
C. M.
, and
Lee
,
R. T.
,
1991
, “
Turbulent Pressure Fluctuations on Surface of Model Vascular Stenoses
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
261
(
3
), pp.
H644
H650
.10.1152/ajpheart.1991.261.3.H644
39.
May
,
P.
,
Arrouvel
,
C.
,
Revol
,
M.
,
Servant
,
J. M.
, and
Vicaut
,
E.
,
2002
, “
Detection of Hemodynamic Turbulence in Experimental Stenosis: An In Vivo Study in the Rat Carotid Artery
,”
JVR
,
39
(
1
), pp.
21
29
.10.1159/000048990
40.
Brinjikji
,
W.
,
Huston
,
J.
,
Rabinstein
,
A. A.
,
Kim
,
G.-M.
,
Lerman
,
A.
, and
Lanzino
,
G.
,
2016
, “
Contemporary Carotid Imaging: From Degree of Stenosis to Plaque Vulnerability
,”
J. Neurosurg
,
124
(
1
), pp.
27
42
.10.3171/2015.1.JNS142452
41.
Mughal
,
M. M.
,
Khan
,
M. K.
,
DeMarco
,
J. K.
,
Majid
,
A.
,
Shamoun
,
F.
, and
Abela
,
G. S.
,
2011
, “
Symptomatic and Asymptomatic Carotid Artery Plaque
,”
Expert Rev. Cardiovasc. Ther.
,
9
(
10
), pp.
1315
1330
.10.1586/erc.11.120
You do not currently have access to this content.