Abstract

Osteogenesis imperfecta (OI), also known as “brittle bone disease,” is a genetic bone disorder. OI bones experience frequent fractures. Surgical procedures are usually followed by clinicians in the management of OI. It has been observed physical activity is equally beneficial in reducing OI bone fractures in both children and adults as mechanical stimulation improves bone mass and strength. Loading-induced mechanical strain and interstitial fluid flow stimulate bone remodeling activities. Several studies have characterized strain environment in OI bones, whereas very few studies attempted to characterize the interstitial fluid flow. OI significantly affects bone micro-architecture. Thus, this study anticipates that canalicular fluid flow reduces in OI bone in comparison to the healthy bone in response to physiological loading due to altered poromechanical properties. This work attempts to understand the canalicular fluid distribution in single osteon models of OI and healthy bone. A poromechanical model of osteon is developed to compute pore-pressure and interstitial fluid flow as a function of gait loading pattern reported for OI and healthy subjects. Fluid distribution patterns are compared at different time-points of the stance phase of the gait cycle. It is observed that fluid flow significantly reduces in OI bone. Additionally, flow is more static than dynamic in OI osteon in comparison to healthy subjects. This work attempts to identify the plausible explanation behind the diminished mechanotransduction capability of OI bone. This work may further be extended for designing better biomechanical therapies to enhance the fluid flow in order to improve osteogenic activities in OI bone.

References

1.
Wallis
,
G. A.
,
Sykes
,
B.
,
Byers
,
P. H.
,
Mathew
,
C. G.
,
Viljoen
,
D.
, and
Beighton
,
P.
,
1993
, “
Osteogenesis Imperfecta Type III: Mutations in the Type I Collagen Structural Genes, COL1A1 and COL1A2, Are Not Necessarily Responsible
,”
J. Med. Genet.
,
30
(
6
), pp.
492
496
.10.1136/jmg.30.6.492
2.
Rauch
,
F.
, and
Glorieux
,
F. H.
,
2004
, “
Osteogenesis Imperfecta
,”
Lancet
,
363
(
9418
), pp.
1377
1385
.10.1016/S0140-6736(04)16051-0
3.
Byers
,
P. H.
, and
Steiner
,
R. D.
,
1992
, “
Osteogenesis Imperfecta
,”
Annu. Rev. Med.
,
43
(
1
), pp.
269
282
.10.1146/annurev.me.43.020192.001413
4.
Monti
,
E.
,
Mottes
,
M.
,
Fraschini
,
P.
,
Brunelli
,
P.
,
Forlino
,
A.
,
Venturi
,
G.
,
Doro
,
F.
,
Perlini
,
S.
,
Cavarzere
,
P.
, and
Antoniazzi
,
F.
,
2010
, “
Current and Emerging Treatments for the Management of Osteogenesis Imperfecta
,”
Ther. Clin. Risk Manage.
,
6
, pp.
367
381
.10.2147/tcrm.s5932
5.
Jerosch
,
J.
,
Mazzotti
,
I.
, and
Tomasevic
,
M.
,
1998
, “
Complications After Treatment of Patients With Osteogenesis Imperfecta With a Bailey-Dubow Rod
,”
Arch. Orthop. Trauma Surg.
,
117
(
4–5
), pp.
240
245
.10.1007/s004020050236
6.
Kocher
,
M. S.
, and
Shapiro
,
F.
,
1998
, “
Osteogenesis Imperfecta
,”
JAAOS J. Am. Acad. Orthop. Surg.
,
6
(
4
), pp.
225
236
.10.5435/00124635-199807000-00004
7.
Vasikaran
,
S.
,
Eastell
,
R.
,
Bruyère
,
O.
,
Foldes
,
A. J.
,
Garnero
,
P.
,
Griesmacher
,
A.
,
McClung
,
M.
,
Morris
,
H. A.
,
Silverman
,
S.
,
Trenti
,
T.
,
Wahl
,
D. A.
,
Cooper
,
C.
, and
Kanis
,
J. A.
,
2011
, “
Markers of Bone Turnover for the Prediction of Fracture Risk and Monitoring of Osteoporosis Treatment: A Need for International Reference Standards
,”
Osteoporosis Int.
,
22
(
2
), pp.
391
420
.10.1007/s00198-010-1501-1
8.
Russell
,
R. G. G.
,
2007
, “
Bisphosphonates: Mode of Action and Pharmacology
,”
Pediatrics
,
119
(
Suppl. 2
), pp.
S150
S162
.10.1542/peds.2006-2023H
9.
Munns
,
C. F.
,
Rauch
,
F.
,
Travers
,
R.
, and
Glorieux
,
F. H.
,
2005
, “
Effects of Intravenous Pamidronate Treatment in Infants With Osteogenesis Imperfecta: Clinical and Histomorphometric Outcome
,”
J. Bone Miner. Res.
,
20
(
7
), pp.
1235
1243
.10.1359/JBMR.050213
10.
Kennel
,
K. A.
, and
Drake
,
M. T.
,
2009
, “
Adverse Effects of Bisphosphonates: Implications for Osteoporosis Management
,”
Mayo Clin. Proc.
,
84
(
7
), pp.
632
638
.10.1016/S0025-6196(11)60752-0
11.
Meakin
,
L. B.
,
Galea
,
G. L.
,
Sugiyama
,
T.
,
Lanyon
,
L. E.
, and
Price
,
J. S.
,
2014
, “
Age-Related Impairment of Bones' Adaptive Response to Loading in Mice Is Associated With Sex-Related Deficiencies in Osteoblasts but No Change in Osteocytes
,”
J. Bone Miner. Res.
,
29
(
8
), pp.
1859
1871
.10.1002/jbmr.2222
12.
Qin
,
Y.-X.
,
Kaplan
,
T.
,
Saldanha
,
A.
, and
Rubin
,
C.
,
2003
, “
Fluid Pressure Gradients, Arising From Oscillations in Intramedullary Pressure, Is Correlated With the Formation of Bone and Inhibition of Intracortical Porosity
,”
J. Biomech.
,
36
(
10
), pp.
1427
1437
.10.1016/S0021-9290(03)00127-1
13.
Tiwari
,
A. K.
, and
Prasad
,
J.
,
2017
, “
Computer Modelling of Bone's Adaptation: The Role of Normal Strain, Shear Strain and Fluid Flow
,”
Biomech. Model. Mechanobiol.
,
16
(
2
), pp.
395
410
.10.1007/s10237-016-0824-z
14.
Tiwari
,
A. K.
,
Kumar
,
R.
,
Tripathi
,
D.
, and
Badhyal
,
S.
,
2018
, “
In Silico Modeling of Bone Adaptation to Rest-Inserted Loading: Strain Energy Density Versus Fluid Flow as Stimulus
,”
J. Theor. Biol.
,
446
, pp.
110
127
.10.1016/j.jtbi.2018.03.009
15.
Kumar
,
R.
,
Tiwari
,
A. K.
,
Tripathi
,
D.
,
Shrivas
,
N. V.
, and
Nizam
,
F.
,
2019
, “
Canalicular Fluid Flow Induced by Loading Waveforms: A Comparative Analysis
,”
J. Theor. Biol.
,
471
, pp.
59
73
.10.1016/j.jtbi.2019.03.023
16.
Fritz
,
J. M.
,
Guan
,
Y.
,
Wang
,
M.
,
Smith
,
P. A.
, and
Harris
,
G. F.
,
2009
, “
A Fracture Risk Assessment Model of the Femur in Children With Osteogenesis Imperfecta (OI) During Gait
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1043
1048
.10.1016/j.medengphy.2009.06.010
17.
Fan
,
Z.
,
Smith
,
P.
,
Reiners
,
K.
,
Hassani
,
S.
, and
Harris
,
G.
,
2004
, “
Biomechanics of Femoral Deformity in Osteogenesis Imperfecta (OI): A Quantitative Approach to Rehabilitation
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, San Francisco, CA, Sept. 1–5, pp.
4884
4887
.10.1109/IEMBS.2004.1404351
18.
Caouette
,
C.
,
Ikin
,
N.
,
Villemure
,
I.
,
Arnoux
,
P.-J.
,
Rauch
,
F.
, and
Aubin
,
C.-E.
,
2017
, “
Geometry Reconstruction Method for Patient-Specific Finite Element Models for the Assessment of Tibia Fracture Risk in Osteogenesis Imperfecta
,”
Med. Biol. Eng. Comput.
,
55
(
4
), pp.
549
560
.10.1007/s11517-016-1526-5
19.
Bonewald
,
L. F.
,
2006
, “
Mechanosensation and Transduction in Osteocytes
,”
BoneKEy Osteovision
,
3
(
10
), pp.
7
15
.10.1138/20060233
20.
Santos
,
A.
,
Bakker
,
A. D.
, and
Klein-Nulend
,
J.
,
2009
, “
The Role of Osteocytes in Bone Mechanotransduction
,”
Osteoporos Int.
,
20
(
6
), pp.
1027
1031
.10.1007/s00198-009-0858-5
21.
Kumar
,
R.
,
Tiwari
,
A. K.
,
Tripathi
,
D.
, and
Sharma
,
N. N.
,
2020
, “
Signalling Molecule Transport Analysis in Lacunar–Canalicular System
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1879
1896
.10.1007/s10237-020-01314-7
22.
Carriero
,
A.
,
Doube
,
M.
,
Vogt
,
M.
,
Busse
,
B.
,
Zustin
,
J.
,
Levchuk
,
A.
,
Schneider
,
P.
,
Müller
,
R.
, and
Shefelbine
,
S. J.
,
2014
, “
Altered Lacunar and Vascular Porosity in Osteogenesis Imperfecta Mouse Bone as Revealed by Synchrotron Tomography Contributes to Bone Fragility
,”
Bone
,
61
, pp.
116
124
.10.1016/j.bone.2013.12.020
23.
Badhyal
,
S.
,
Dhole
,
S. R.
,
Gopinathan
,
N. R.
,
Dhillon
,
M. S.
,
Dhiman
,
V.
,
Jayal
,
A. D.
, and
Prasad
,
J.
,
2019
, “
Kinetic and Kinematic Analysis of Gait in Type IV Osteogenesis Imperfecta Patients: A Comparative Study
,”
Indian J. Orthop.
,
53
(
4
), pp.
560
566
.10.4103/ortho.IJOrtho_291_18
24.
Wu
,
X.-G.
, and
Chen
,
W.-Y.
,
2013
, “
A Hollow Osteon Model for Examining Its Poroelastic Behaviors: Mathematically Modeling an Osteon With Different Boundary Cases
,”
Eur. J. Mech.-A/Solids
,
40
, pp.
34
49
.10.1016/j.euromechsol.2012.12.005
25.
Wu
,
X.
,
Wang
,
N.
,
Wang
,
Z.
,
Yu
,
W.
,
Wang
,
Y.
,
Guo
,
Y.
, and
Chen
,
W.
,
2016
, “
Mathematically Modeling Fluid Flow and Fluid Shear Stress in the Canaliculi of a Loaded Osteon
,”
Biomed. Eng. Online
,
15
(
S2
), p.
149
.10.1186/s12938-016-0267-x
26.
Redelstorff
,
R.
,
Sander
,
P. M.
, and
Galton
,
P. M.
,
2012
, “
Unique Bone Histology in Partial Large Bone Shafts From Upper Triassic of Aust Cliff, England: An Early Independent Experiment in Gigantism
,”
Acta Palaeontol. Pol.
,
59
(
3
), pp.
607
615
.10.4202/app.2012.0073
27.
Ericksen
,
M. F.
,
1991
, “
Histologic Estimation of Age at Death Using the Anterior Cortex of the Femur
,”
Am. J. Phys. Anthropol.
,
84
(
2
), pp.
171
179
.10.1002/ajpa.1330840207
28.
Pazzaglia
,
U. E.
,
Congiu
,
T.
,
Brunelli
,
P. C.
,
Magnano
,
L.
, and
Benetti
,
A.
,
2013
, “
The Long Bone Deformity of Osteogenesis Imperfecta III: Analysis of Structural Changes Carried Out With Scanning Electron Microscopic Morphometry
,”
Calcif. Tissue Int.
,
93
(
5
), pp.
453
461
.10.1007/s00223-013-9771-1
29.
Hoang
,
S. K.
, and
Abousleiman
,
Y. N.
,
2010
, “
Poroviscoelasticity of Transversely Isotropic Cylinders Under Laboratory Loading Conditions
,”
Mech. Res. Commun.
,
37
(
3
), pp.
298
306
.10.1016/j.mechrescom.2010.01.008
30.
Srinivasan
,
S.
, and
Gross
,
T. S.
,
2000
, “
Canalicular Fluid Flow Induced by Bending of a Long Bone
,”
Med. Eng. Phys.
,
22
(
2
), pp.
127
133
.10.1016/S1350-4533(00)00021-7
31.
Wang
,
L.
,
Wang
,
Y.
,
Han
,
Y.
,
Henderson
,
S. C.
,
Majeska
,
R. J.
,
Weinbaum
,
S.
, and
Schaffler
,
M. B.
,
2005
, “
In Situ Measurement of Solute Transport in the Bone Lacunar-Canalicular System
,”
Proc. Natl. Acad. Sci.
,
102
(
33
), pp.
11911
11916
.10.1073/pnas.0505193102
32.
Hirose
,
S.
,
Li
,
M.
,
Kojima
,
T.
,
de Freitas
,
P. H. L.
,
Ubaidus
,
S.
,
Oda
,
K.
,
Saito
,
C.
, and
Amizuka
,
N.
,
2007
, “
A Histological Assessment on the Distribution of the Osteocytic Lacunar Canalicular System Using Silver Staining
,”
J. Bone Miner. Metab.
,
25
(
6
), pp.
374
382
.10.1007/s00774-007-0764-x
33.
Nguyen
,
V.-H.
,
Lemaire
,
T.
, and
Naili
,
S.
,
2009
, “
Numerical Study of Deformation-Induced Fluid Flows in Periodic Osteonal Matrix Under Harmonic Axial Loading
,”
C. R. Mec.
,
337
(
5
), pp.
268
276
.10.1016/j.crme.2009.06.033
34.
Albert
,
C.
,
Jameson
,
J.
,
Smith
,
P.
, and
Harris
,
G. F.
,
2016
, “
Material and Structural Aspects of Bone in Osteogenesis Imperfecta
,” Biomedical Engineering Faculty Research and Publications, pp.
177
194
.https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1449&context=bioengin_fac
35.
Hellmich
,
C.
, and
Ulm
,
F.-J.
,
2005
, “
Drained and Undrained Poroelastic Properties of Healthy and Pathological Bone: A Poro-Micromechanical Investigation
,”
Transp. Porous Media
,
58
(
3
), pp.
243
268
.10.1007/s11242-004-6298-y
36.
Smit
,
T. H.
,
Huyghe
,
J. M.
, and
Cowin
,
S. C.
,
2002
, “
Estimation of the Poroelastic Parameters of Cortical Bone
,”
J. Biomech.
,
35
(
6
), pp.
829
835
.10.1016/S0021-9290(02)00021-0
37.
Jameson
,
J. R.
,
Albert
,
C. I.
,
Busse
,
B.
,
Smith
,
P. A.
, and
Harris
,
G. F.
,
2013
, “
3D Micron-Scale Imaging of the Cortical Bone Canal Network in Human Osteogenesis Imperfecta (OI)
,”
Proc. SPIE
,
8672
, p.
86721 L
.10.1117/12.2007209
38.
Nguyen
,
V. X.
, and
Abousleiman
,
Y. N.
,
2010
, “
Poromechanics Solutions to Plane Strain and Axisymmetric Mandel-Type Problems in Dual-Porosity and Dual-Permeability Medium
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011002
.10.1115/1.3172146
39.
Nguyen
,
V. X.
,
Abousleiman
,
Y. N.
, and
Hoang
,
S.
,
2009
, “
Analyses of Wellbore Instability in Drilling Through Chemically Active Fractured-Rock Formations
,”
SPE J.
,
14
(
2
), pp.
283
301
.10.2118/105383-PA
40.
Nguyen
,
V.-H.
,
Lemaire
,
T.
, and
Naili
,
S.
,
2010
, “
Poroelastic Behaviour of Cortical Bone Under Harmonic Axial Loading: A Finite Element Study at the Osteonal Scale
,”
Med. Eng. Phys.
,
32
(
4
), pp.
384
390
.10.1016/j.medengphy.2010.02.001
41.
Jameson
,
J. R.
,
2014
, “
Characterization of Bone Material Properties and Microstructure in Osteogenesis Imperfecta/Brittle Bone Disease
,” Ph.D. dissertation, Paper No.
413
.http://epublications.marquette.edu/dissertations_mu/413
42.
Cowin
,
S. C.
,
2002
, “
Mechanosensation and Fluid Transport in Living Bone
,”
J. Musculoskeletal Neuronal Interact.
,
2
(
3
), pp.
256
260
.https://pubmed.ncbi.nlm.nih.gov/15758447/
43.
Chen
,
Y.
,
Wang
,
W.
,
Ding
,
S.
,
Wang
,
X.
,
Chen
,
Q.
, and
Li
,
X.
,
2018
, “
A Multi-Layered Poroelastic Slab Model Under Cyclic Loading for a Single Osteon
,”
Biomed. Eng. Online
,
17
(
1
), p.
97
.10.1186/s12938-018-0528-y
44.
Yu
,
W.
,
Wu
,
X.
,
Cen
,
H.
,
Guo
,
Y.
,
Li
,
C.
,
Wang
,
Y.
,
Qin
,
Y.
, and
Chen
,
W.
,
2019
, “
Study on the Biomechanical Responses of the Loaded Bone in Macroscale and Mesoscale by Multiscale Poroelastic FE Analysis
,”
Biomed. Eng. Online
,
18
(
1
), pp.
1
19
.10.1186/s12938-019-0741-3
45.
Swan
,
C. C.
,
Lakes
,
R. S.
,
Brand
,
R. A.
, and
Stewart
,
K. J.
,
2003
, “
Micromechanically Based Poroelastic Modeling of Fluid Flow in Haversian Bone
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
25
37
.10.1115/1.1535191
46.
Milovanovic
,
P.
,
Zimmermann
,
E. A.
,
Hahn
,
M.
,
Djonic
,
D.
,
Püschel
,
K.
,
Djuric
,
M.
,
Amling
,
M.
, and
Busse
,
B.
,
2013
, “
Osteocytic Canalicular Networks: Morphological Implications for Altered Mechanosensitivity
,”
ACS Nano
,
7
(
9
), pp.
7542
7551
.10.1021/nn401360u
47.
van Tol
,
A. F.
,
Roschger
,
A.
,
Repp
,
F.
,
Chen
,
J.
,
Roschger
,
P.
,
Berzlanovich
,
A.
,
Gruber
,
G. M.
,
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2020
, “
Network Architecture Strongly Influences the Fluid Flow Pattern Through the Lacunocanalicular Network in Human Osteons
,”
Biomech. Model. Mechanobiol.
,
19
(
3
), pp.
823
840
.10.1007/s10237-019-01250-1
48.
Ascenzi
,
M.-G.
,
Kabo
,
J. M.
, and
Andreuzzi
,
M.
,
2004
, “
Mathematical Modeling of Human Secondary Osteons
,”
Scanning J. Scanning Microsc.
,
26
(
1
), pp.
25
35
.10.1002/sca.4950260105
49.
Lin
,
Y.
, and
Xu
,
S.
,
2011
, “
AFM Analysis of the Lacunar-Canalicular Network in Demineralized Compact Bone
,”
J. Microsc.
,
241
(
3
), pp.
291
302
.10.1111/j.1365-2818.2010.03431.x
50.
Goulet
,
G. C.
,
Coombe
,
D.
,
Martinuzzi
,
R. J.
, and
Zernicke
,
R. F.
,
2009
, “
Poroelastic Evaluation of Fluid Movement Through the Lacunocanalicular System
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1390
1402
.10.1007/s10439-009-9706-1
51.
Gururaja
,
S.
,
Kim
,
H. J.
,
Swan
,
C. C.
,
Brand
,
R. A.
, and
Lakes
,
R. S.
,
2005
, “
Modeling Deformation-Induced Fluid Flow in Cortical Bone's Canalicular–Lacunar System
,”
Ann. Biomed. Eng.
,
33
(
1
), pp.
7
25
.10.1007/s10439-005-8959-6
52.
Cardoso
,
L.
,
Fritton
,
S. P.
,
Gailani
,
G.
,
Benalla
,
M.
, and
Cowin
,
S. C.
,
2013
, “
Advances in Assessment of Bone Porosity, Permeability and Interstitial Fluid Flow
,”
J. Biomech.
,
46
(
2
), pp.
253
265
.10.1016/j.jbiomech.2012.10.025
53.
Burger
,
E. H.
, and
Klein‐Nulend
,
J.
,
1999
, “
Mechanotransduction in Bone—Role of the Lacunocanalicular Network
,”
FASEB J.
,
13
(
9001
), pp.
S101
S112
.10.1096/fasebj.13.9001.s101
54.
Hemmatian
,
H.
,
Bakker
,
A. D.
,
Klein-Nulend
,
J.
, and
van Lenthe
,
G. H.
,
2017
, “
Aging, Osteocytes, and Mechanotransduction
,”
Curr. Osteoporosis Rep.
,
15
(
5
), pp.
401
411
.10.1007/s11914-017-0402-z
55.
Blouin
,
S.
,
Fratzl-Zelman
,
N.
,
Glorieux
,
F. H.
,
Roschger
,
P.
,
Klaushofer
,
K.
,
Marini
,
J. C.
, and
Rauch
,
F.
,
2017
, “
Hypermineralization and High Osteocyte Lacunar Density in Osteogenesis Imperfecta Type V Bone Indicate Exuberant Primary Bone Formation
,”
J. Bone Miner. Res.
,
32
(
9
), pp.
1884
1892
.10.1002/jbmr.3180
56.
Imbert
,
L.
,
Aurégan
,
J.-C.
,
Pernelle
,
K.
, and
Hoc
,
T.
,
2015
, “
Microstructure and Compressive Mechanical Properties of Cortical Bone in Children With Osteogenesis Imperfecta Treated With Bisphosphonates Compared With Healthy Children
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
261
270
.10.1016/j.jmbbm.2014.12.020
57.
Vardakastani
,
V.
,
Saletti
,
D.
,
Skalli
,
W.
,
Marry
,
P.
,
Allain
,
J.-M.
, and
Adam
,
C.
,
2014
, “
Increased Intra-Cortical Porosity Reduces Bone Stiffness and Strength in Pediatric Patients With Osteogenesis Imperfecta
,”
Bone
,
69
, pp.
61
67
.10.1016/j.bone.2014.09.003
58.
Kerschnitzki
,
M.
,
Kollmannsberger
,
P.
,
Burghammer
,
M.
,
Duda
,
G. N.
,
Weinkamer
,
R.
,
Wagermaier
,
W.
, and
Fratzl
,
P.
,
2013
, “
Architecture of the Osteocyte Network Correlates With Bone Material Quality
,”
J. Bone Miner. Res.
,
28
(
8
), pp.
1837
1845
.10.1002/jbmr.1927
59.
Verbruggen
,
S. W.
,
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2014
, “
Fluid Flow in the Osteocyte Mechanical Environment: A Fluid–Structure Interaction Approach
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
85
97
.10.1007/s10237-013-0487-y
60.
Baeyens
,
N.
,
Nicoli
,
S.
,
Coon
,
B. G.
,
Ross
,
T. D.
,
Van den Dries
,
K.
,
Han
,
J.
,
Lauridsen
,
H. M.
,
Mejean
,
C. O.
,
Eichmann
,
A.
,
Thomas
,
J.-L.
,
Humphrey
,
J. D.
, and
Schwartz
,
M. A.
,
2015
, “
Vascular Remodeling Is Governed by a VEGFR3-Dependent Fluid Shear Stress Set Point
,”
eLife
,
4
, p.
e04645
.10.7554/eLife.04645
61.
Zhou
,
X.
,
Novotny
,
J. E.
, and
Wang
,
L.
,
2008
, “
Modeling Fluorescence Recovery After Photobleaching in Loaded Bone: Potential Applications in Measuring Fluid and Solute Transport in the Osteocytic Lacunar-Canalicular System
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
1961
1977
.10.1007/s10439-008-9566-0
62.
Lanyon
,
L. E.
,
1984
, “
Functional Strain as a Determinant for Bone Remodeling
,”
Calcif. Tissue Int.
,
36
(
S1
), pp.
S56
S61
.10.1007/BF02406134
63.
Repp
,
F.
,
Kollmannsberger
,
P.
,
Roschger
,
A.
,
Kerschnitzki
,
M.
,
Berzlanovich
,
A.
,
Gruber
,
G. M.
,
Roschger
,
P.
,
Wagermaier
,
W.
, and
Weinkamer
,
R.
,
2017
, “
Spatial Heterogeneity in the Canalicular Density of the Osteocyte Network in Human Osteons
,”
Bone Rep.
,
6
, pp.
101
108
.10.1016/j.bonr.2017.03.001
64.
Roschger
,
A.
,
Roschger
,
P.
,
Wagermaier
,
W.
,
Chen
,
J.
,
van Tol
,
A. F.
,
Repp
,
F.
,
Blouin
,
S.
,
Berzlanovich
,
A.
,
Gruber
,
G. M.
,
Klaushofer
,
K.
,
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2019
, “
The Contribution of the Pericanalicular Matrix to Mineral Content in Human Osteonal Bone
,”
Bone
,
123
, pp.
76
85
.10.1016/j.bone.2019.03.018
65.
Andreasen
,
C. M.
,
Delaisse
,
J.-M.
,
van der Eerden
,
B. C.
,
van Leeuwen
,
J. P.
,
Ding
,
M.
, and
Andersen
,
T. L.
,
2018
, “
Understanding Age-Induced Cortical Porosity in Women: The Accumulation and Coalescence of Eroded Cavities Upon Existing Intracortical Canals Is the Main Contributor
,”
J. Bone Miner. Res.
,
33
(
4
), pp.
606
620
.10.1002/jbmr.3354
66.
Yoshino
,
M.
,
Imaizumi
,
K.
,
Miyasaka
,
S.
, and
Seta
,
S.
,
1994
, “
Histological Estimation of Age at Death Using Microradiographs of Humeral Compact Bone
,”
Forensic Sci. Int.
,
64
(
2–3
), pp.
191
198
.10.1016/0379-0738(94)90231-3
67.
Rémond
,
A.
, and
Naili
,
S.
,
2005
, “
Transverse Isotropic Poroelastic Osteon Model Under Cyclic Loading
,”
Mech. Res. Commun.
,
32
(
6
), pp.
645
651
.10.1016/j.mechrescom.2004.10.003
68.
Wu
,
X.
,
Chen
,
W.
, and
Wang
,
D.
,
2013
, “
Mathematical Osteon Model for Examining Poroelastic Behaviors
,”
Appl. Math. Mech. Engl. Ed.
,
34
(
4
), pp.
405
416
.10.1007/s10483-013-1680-x
You do not currently have access to this content.