Abstract

Finite element (FE) modeling of the spine has increasingly been applied in orthopedic precision-medicine approaches. Previously published FE models of the pediatric spine growth have made simplifications in the geometry of anatomical structures, material properties, and representation of vertebral growth. To address those limitations, a comprehensive FE model of a pediatric (10-year-old) osteo-ligamentous thoracic and lumbar spine (T1-L5 with intervertebral discs (IVDs) and ligaments), ribcage, and pelvis with age- and level-specific ligament properties and orthotropic region-specific vertebral growth was developed and validated. Range of motion (ROM) measures, namely, lateral bending, flexion–extension, and axial rotation, of the current 10 YO FE model were generally within reported ranges of scaled in vitro adult ROM data. Changes in T1-L5 spine height, as well as kyphosis (T2-T12) and lordosis (L1-L5), angles in the current FE model for two years of growth (from ages 10 to 12 years) were within ranges reported from corresponding pediatric clinical data. The use of such comprehensive pediatric FE models can provide clinically relevant insights into normative and pathological biomechanical responses of the spine, and also contribute to the development and optimization of clinical interventions for spine deformities.

References

1.
Dong
,
L.
,
Li
,
G.
,
Mao
,
H.
,
Marek
,
S.
, and
Yang
,
K. H.
,
2013
, “
Development and Validation of a 10-Year-Old Child Ligamentous Cervical Spine Finite Element Model
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2538
2552
.10.1007/s10439-013-0858-7
2.
Beillas
,
P.
,
Giordano
,
C.
,
Alvarez
,
V. S.
,
Li
,
X.
,
Ying
,
X.
,
Chevalier
,
M.-C.
,
Kirscht
,
S.
, and
Kleiven
,
S.
,
2016
, “Development and Performance of the PIPER Scalable Child Human Body Models,”
14th International Conference on the Protection of Children in Cars
, Munich, Germany, Dec. 8–9, pp. 1–19, Paper No. hal-01720414.https://hal.archives-ouvertes.fr/hal-01720414/file/ris00000577.pdf
3.
Jiang
,
B.
,
Cao
,
L.
,
Mao
,
H.
,
Wagner
,
C.
,
Marek
,
S.
, and
Yang
,
K. H.
,
2014
, “
Development of a 10-Year-Old Paediatric Thorax Finite Element Model Validated Against Cardiopulmonary Resuscitation Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
11
), pp.
1185
1197
.10.1080/10255842.2012.739164
4.
Jiang
,
B.
,
Mao
,
H.
,
Cao
,
L.
, and
Yang
,
K. H.
,
2014
, “
Application of an Anatomically-Detailed Finite Element Thorax Model to Investigate Pediatric Cardiopulmonary Resuscitation Techniques on Hard Bed
,”
Comput. Biol. Med.
,
52
, pp.
28
34
.10.1016/j.compbiomed.2014.05.014
5.
Cobetto
,
N.
,
Aubin
,
C. E.
, and
Parent
,
S.
,
2018
, “
Surgical Planning and Follow-Up of Anterior Vertebral Body Growth Modulation in Pediatric Idiopathic Scoliosis Using a Patient-Specific Finite Element Model Integrating Growth Modulation
,”
Spine Deform.
,
6
(
4
), pp.
344
350
.10.1016/j.jspd.2017.11.006
6.
Cobetto
,
N.
,
Aubin
,
C. E.
,
Parent
,
S.
,
Clin
,
J.
,
Barchi
,
S.
,
Turgeon
,
I.
, and
Labelle
,
H.
,
2016
, “
Effectiveness of Braces Designed Using Computer-Aided Design and Manufacturing (CAD/CAM) and Finite Element Simulation Compared to CAD/CAM Only for the Conservative Treatment of Adolescent Idiopathic Scoliosis: A Prospective Randomized Controlled Trial
,”
Eur. Spine J.
,
25
(
10
), pp.
3056
3064
.10.1007/s00586-016-4434-3
7.
Cobetto
,
N.
,
Aubin
,
C.-E.
, and
Parent
,
S.
,
2020
, “
Anterior Vertebral Body Growth Modulation
,”
Spine
,
45
(
18
), pp.
E1203
E1209
.10.1097/BRS.0000000000003533
8.
Cobetto
,
N.
,
Parent
,
S.
, and
Aubin
,
C. E.
,
2018b
, “
3D Correction Over 2years With Anterior Vertebral Body Growth Modulation: A Finite Element Analysis of Screw Positioning, Cable Tensioning and Postoperative Functional Activities
,”
Clin. Biomech. (Bristol, Avon)
,
51
, pp.
26
33
.10.1016/j.clinbiomech.2017.11.007
9.
Lin
,
H.
,
Aubin
,
C. E.
,
Parent
,
S.
, and
Villemure
,
I.
,
2009
, “
Mechanobiological Bone Growth: Comparative Analysis of Two Biomechanical Modeling Approaches
,”
Med. Biol. Eng. Comput.
,
47
(
4
), pp.
357
366
.10.1007/s11517-008-0425-9
10.
Sylvestre
,
P.-L.
,
Villemure
,
I.
, and
Aubin
,
C.-É.
,
2007
, “
Finite Element Modeling of the Growth Plate in a Detailed Spine Model
,”
Med. Biol. Eng. Comput.
,
45
(
10
), pp.
977
988
.10.1007/s11517-007-0220-z
11.
Fok
,
J.
,
Adeeb
,
S.
, and
Carey
,
J.
,
2010
, “
FEM Simulation of Non-Progressive Growth From Asymmetric Loading and Vicious Cycle Theory: Scoliosis Study Proof of Concept
,”
Open Biomed. Eng. J.
,
4
(
1
), pp.
162
169
.10.2174/1874120701004010162
12.
Meijer
,
G. J.
,
2011
,
Development of a Non-Fusion Scoliosis Correction Device
,
Enschede
,
The Netherlands
.
13.
Cai
,
X.-Y.
,
Sang
,
D.
,
Yuchi
,
C.-X.
,
Cui
,
W.
,
Zhang
,
C.
,
Du
,
C.-F.
, and
Liu
,
B.
,
2020
, “
Using Finite Element Analysis to Determine Effects of the Motion Loading Method on Facet Joint Forces After Cervical Disc Degeneration
,”
Comput. Biol. Med.
,
116
, p.
103519
.10.1016/j.compbiomed.2019.103519
14.
Qiu
,
T.-X.
, and
Teo
,
E.-C.
,
2004
, “
Finite Element Modeling of Human Thoracic Spine
,”
J. Musculoskeletal Res.
,
08
(
04
), pp.
133
144
.10.1142/S0218957704001302
15.
Rohlmann
,
A.
,
Zander
,
T.
,
Rao
,
M.
, and
Bergmann
,
G.
,
2009
, “
Realistic Loading Conditions for Upper Body Bending
,”
J. Biomech.
,
42
(
7
), pp.
884
890
.10.1016/j.jbiomech.2009.01.017
16.
Ayturk
,
U. M.
, and
Puttlitz
,
C. M.
,
2011
, “
Parametric Convergence Sensitivity and Validation of a Finite Element Model of the Human Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
8
), pp.
695
705
.10.1080/10255842.2010.493517
17.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
,
et al.
,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.10.1016/j.jbiomech.2014.04.002
18.
Shi
,
L.
,
Wang
,
D.
,
Driscoll
,
M.
,
Villemure
,
I.
,
Chu
,
W. C.
,
Cheng
,
J. C.
, and
Aubin
,
C. E.
,
2011
, “
Biomechanical Analysis and Modeling of Different Vertebral Growth Patterns in Adolescent Idiopathic Scoliosis and Healthy Subjects
,”
Scoliosis
,
6
(
1
), p.
11
.10.1186/1748-7161-6-11
19.
Wang
,
W.
,
Baran
,
G. R.
,
Betz
,
R. R.
,
Samdani
,
A. F.
,
Pahys
,
J. M.
, and
Cahill
,
P. J.
,
2014
, “
The Use of Finite Element Models to Assist Understanding and Treatment for Scoliosis: A Review Paper
,”
Spine Deform.
,
2
(
1
), pp.
10
27
.10.1016/j.jspd.2013.09.007
20.
Liu
,
X. J.
, and
Yang
,
J. K.
,
2002
, “
Development of Child Pedestrian Mathematical Models and Evaluation With Accident Reconstruction
,”
Traffic Injury Prev.
,
3
(
4
), pp.
321
329
.10.1080/15389580214626
21.
Chazal
,
J.
,
Tanguy
,
A.
,
Bourges
,
M.
,
Gaurel
,
G.
,
Escande
,
G.
,
Guillot
,
M.
, and
Vanneuville
,
G.
,
1985
, “
Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction
,”
J. Biomech.
,
18
(
3
), pp.
167
176
.10.1016/0021-9290(85)90202-7
22.
Tajdari
,
M.
,
Pawar
,
A.
,
Li
,
H.
,
Tajdari
,
F.
,
Maqsood
,
A.
,
Cleary
,
E.
,
Saha
,
S.
,
Zhang
,
Y. J.
,
Sarwark
,
J. F.
, and
Liu
,
W. K.
,
2021
, “
Image-Based Modelling for Adolescent Idiopathic Scoliosis: Mechanistic Machine Learning Analysis and Prediction
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113590
.10.1016/j.cma.2020.113590
23.
Lord
,
M. J.
,
Ogden
,
J. A.
, and
Ganey
,
T. M.
,
1995
, “
Postnatal-Development of the Thoracic Spine
,”
Spine
,
20
(
15
), pp.
1692
1698
.10.1097/00007632-199508000-00008
24.
Masharawi
,
Y. M.
,
Peleg
,
S.
,
Albert
,
H. B.
,
Dar
,
G.
,
Steingberg
,
N.
,
Medlej
,
B.
,
Abbas
,
J.
,
Salame
,
K.
,
Mirovski
,
Y.
,
Peled
,
N.
, and
Hershkovitz
,
I.
,
2008
, “
Facet Asymmetry in Normal Vertebral growth - Characterization and Etiologic Theory of Scoliosis
,”
Spine
,
33
(
8
), pp.
898
902
.10.1097/BRS.0b013e31816b1f83
25.
Taylor
,
J. R.
,
1975
, “
Growth of Human Intervertebral Discs and Vertebral Bodies
,”
J. Anat.
,
120
(
Pt 1
), pp.
49
68
.
26.
Peters
,
J. R.
,
Chandrasekaran
,
C.
,
Robinson
,
L. F.
,
Servaes
,
S. E.
,
Campbell
,
R. M.
, Jr.
, and
Balasubramanian
,
S.
,
2015
, “
Age- and Gender-Related Changes in Pediatric Thoracic Vertebral Morphology
,”
Spine J.
,
15
(
5
), pp.
1000
1020
.10.1016/j.spinee.2015.01.016
27.
Peters
,
J. R.
,
Servaes
,
S.
,
Cahill
,
P.
, and
Balasubramanian
,
S.
,
2021
, “
Morphology and Growth of the Pediatric Lumbar Vertebrae
,”
Spine J.
,
21
(
4
), pp.
682
697
.10.1016/j.spinee.2020.10.029
28.
Balasubramanian
,
S.
,
Peters
,
J. R.
,
Robinson
,
L. F.
,
Singh
,
A.
, and
Kent
,
R. W.
,
2016
, “
Thoracic Spine Morphology of a Pseudo-Biped Animal Model (Kangaroo) and Comparisons With Human and Quadruped Animals
,”
Eur. Spine J.
,
25
(
12
), pp.
4140
4154
.10.1007/s00586-016-4776-x
29.
Peters
,
J. R.
,
Campbell
,
R. M.
, and
Balasubramanian
,
S.
,
2017
, “
Characterization of the Age-Dependent Shape of the Pediatric Thoracic Spine and Vertebrae Using Generalized Procrustes Analysis
,”
J. Biomech.
,
63
, pp.
32
40
.10.1016/j.jbiomech.2017.07.030
30.
Hadagali
,
P.
,
Peters
,
J. R.
, and
Balasubramanian
,
S.
,
2018
, “
Morphing the Feature-Based Multi-Blocks of Normative/Healthy Vertebral Geometries to Scoliosis Vertebral Geometries: Development of Personalized Finite Element Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
4
), pp.
297
324
.10.1080/10255842.2018.1448391
31.
El Masri
,
F.
,
Sapin de Brosses
,
E.
,
Rhissassi
,
K.
,
Skalli
,
W.
, and
Mitton
,
D.
,
2012
, “
Apparent Young's Modulus of Vertebral Cortico-Cancellous Bone Specimens
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
23
28
.10.1080/10255842.2011.565751
32.
Sattout
,
A.
,
Clin
,
J.
,
Cobetto
,
N.
,
Labelle
,
H.
, and
Aubin
,
C.-E.
,
2016
, “
Biomechanical Assessment of Providence Nighttime Brace for the Treatment of Adolescent Idiopathic Scoliosis
,”
Spine Deform.
,
4
(
4
), pp.
253
260
.10.1016/j.jspd.2015.12.004
33.
Shirazi-Adl
,
A.
,
1994
, “
Biomechanics of the Lumbar Spine in Sagittal/Lateral Moments
,”
Spine
,
19
(
21
), pp.
2407
2414
.10.1097/00007632-199411000-00007
34.
Forman
,
J. L.
, and
Kent
,
R. W.
,
2011
, “
Modeling Costal Cartilage Using Local Material Properties With Consideration for Gross Heterogeneities
,”
J. Biomech.
,
44
(
5
), pp.
910
916
.10.1016/j.jbiomech.2010.11.034
35.
Feng
,
J.
,
Hu
,
T.
,
Liu
,
W.
,
Zhang
,
S.
,
Tang
,
Y.
,
Chen
,
R.
,
Jiang
,
X.
, and
Wei
,
F.
,
2001
, “
The Biomechanical, Morphologic, and Histochemical Properties of the Costal Cartilages in Children With Pectus Excavatum
,”
J. Pediat. Surg.
,
36
(
12
), pp.
1770
1776
.10.1053/jpsu.2001.28820
36.
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1998
, “
Biomechanics of Human Thoracic Ribs
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
100
104
.10.1115/1.2834288
37.
Aira
,
J.
,
Guleyupoglu
,
B.
,
Jones
,
D.
,
Koya
,
B.
,
Davis
,
M.
, and
Gayzik
,
F. S.
,
2019
, “
Validated Thoracic Vertebrae and Costovertebral Joints Increase Biofidelity of a Human Body Model in Hub Impacts
,”
Traffic Injury Prev.
,
20
(
sup2
), pp.
S1
S6
.10.1080/15389588.2019.1638511
38.
Kiapour
,
A.
,
Ambati
,
D.
,
Hoy
,
R. W.
, and
Goel
,
V. K.
,
2012
, “
Effect of Graded Facetectomy on Biomechanics of Dynesys Dynamic Stabilization System
,”
Spine
,
37
(
10
), pp. E581–E589.10.1097/BRS.0b013e3182463775
39.
Little
,
J. P.
,
De Visser
,
H.
,
Pearcy
,
M. J.
, and
Adam
,
C. J.
,
2008
, “
Are Coupled Rotations in the Lumbar Spine Largely Due to the Osseo-Ligamentous Anatomy?—A Modeling Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
1
), pp.
95
103
.10.1080/10255840701552143
40.
Liu
,
C.-L.
,
Zhong
,
Z.-C.
,
Hsu
,
H.-W.
,
Shih
,
S.-L.
,
Wang
,
S.-T.
,
Hung
,
C.
, and
Chen
,
C.-S.
,
2011
, “
Effect of the Cord Pretension of the Dynesys Dynamic Stabilisation System on the Biomechanics of the Lumbar Spine: A Finite Element Analysis
,”
Eur. Spine J.
,
20
(
11
), pp.
1850
1858
.10.1007/s00586-011-1817-3
41.
Park
,
W. M.
,
Kim
,
K.
, and
Kim
,
Y. H.
,
2013
, “
Effects of Degenerated Intervertebral Discs on Intersegmental Rotations, Intradiscal Pressures, and Facet Joint Forces of the Whole Lumbar Spine
,”
Comput. Biol. Med.
,
43
(
9
), pp.
1234
1240
.10.1016/j.compbiomed.2013.06.011
42.
Schmidt
,
H.
,
Galbusera
,
F.
,
Rohlmann
,
A.
,
Zander
,
T.
, and
Wilke
,
H.-J.
,
2012
, “
Effect of Multilevel Lumbar Disc Arthroplasty on Spine Kinematics and Facet Joint Loads in Flexion and Extension: A Finite Element Analysis
,”
Eur. Spine J.
,
21
(
S5
), pp.
663
674
.10.1007/s00586-010-1382-1
43.
Zander
,
T.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
Influence of Different Artificial Disc Kinematics on Spine Biomechanics
,”
Clin. Biomech.
,
24
(
2
), pp.
135
142
.10.1016/j.clinbiomech.2008.11.008
44.
Watkins
,
R.
,
Williams
,
L.
,
Ahlbrand
,
S.
,
Garcia
,
R.
,
Karamanian
,
A.
,
Sharp
,
L.
,
Vo
,
C.
, and
Hedman
,
T.
,
2005
, “
Stability Provided by the Sternum and Rib Cage in the Thoracic Spine
,”
Spine (Phila Pa 1976)
,
30
(
11
), pp.
1283
1286
.10.1097/01.brs.0000164257.69354.bb
45.
Liebsch
,
C.
,
Graf
,
N.
,
Appelt
,
K.
, and
Wilke
,
H.-J.
,
2017
, “
The Rib Cage Stabilizes the Human Thoracic Spine: An In Vitro Study Using Stepwise Reduction of Rib Cage Structures
,”
PLoS One
,
12
(
6
), p.
e0178733
.10.1371/journal.pone.0178733
46.
Rohlmann
,
A.
,
Neller
,
S.
,
Claes
,
L.
,
Bergmann
,
G.
, and
Wilke
,
H.-J.
,
2001
, “
Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine
,”
Spine
,
26
(
24
), pp.
E557
E561
.10.1097/00007632-200112150-00014
47.
Irwin
,
A.
, and Mertz, H.,
1997
, “
Biomechanical Basis for the CRABI and Hybrid III Child Dummies
,”
SAE
Paper No. 973317.10.4271/973317
48.
Agarwal
,
A.
,
Agarwal
,
A. K.
,
Jayaswal
,
A.
, and
Goel
,
V. K.
,
2014
, “
Effect of Distraction Force on Growth and Biomechanics of the Spine: A Finite Element Study on Normal Juvenile Spine With Dual Growth Rod Instrumentation
,”
Spine Deform.
,
2
(
4
), pp.
260
269
.10.1016/j.jspd.2014.03.007
49.
Abolaeha
,
O. A.
,
Weber
,
J.
, and
Ross
,
L. T.
,
2012
, “
Finite Element Simulation of a Scoliotic Spine With Periodic Adjustments of an Attached Growing Rod
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, San Diego, CA, Aug. 28–Sept. 1, pp.
5781
5785
.10.1109/EMBC.2012.6347308
50.
Clin
,
J.
,
Aubin
,
C. E.
,
Lalonde
,
N.
,
Parent
,
S.
, and
Labelle
,
H.
,
2011
, “
A New Method to Include the Gravitational Forces in a Finite Element Model of the Scoliotic Spine
,”
Med Biol Eng Comput.
,
49
(
8
), pp.
967
77
.10.1007/s11517-011-0793-4
51.
Arbogast
,
K. B.
,
Balasubramanian
,
S.
,
Seacrist
,
T.
,
Maltese
,
M. R.
,
García-España
,
J. F.
,
Hopely
,
T.
,
Constans
,
E.
,
et al.
,
2009
, “
Comparison of Kinematic Responses of the Head and Spine for Children and Adults in Low-Speed Frontal Sled Tests
,”
Stapp Car Crash J.
,
53
, pp.
329
372
.https://www.researchgate.net/publication/40896448_Comparison_of_kinematic_responses_of_the_head_and_spine_for_children_and_adults_in_lowspeed_frontal_sled_tests
52.
Seacrist
,
T.
,
Saffioti
,
J.
,
Balasubramanian
,
S.
,
Kadlowec
,
J.
,
Sterner
,
R.
,
García-España
,
J. F.
,
Arbogast
,
K. B.
, and
Maltese
,
M. R.
,
2012
, “
Passive Cervical Spine Flexion: The Effect of Age and Gender
,”
Clin. Biomech.
,
27
(
4
), pp.
326
333
.10.1016/j.clinbiomech.2011.10.012
53.
Dimeglio
,
A.
, and
Canavese
,
F.
,
2020
, “
The Immature Spine: Growth and Idiopathic Scoliosis
,”
Ann. Transl. Med.
,
8
(
2
), p.
22
.10.21037/atm.2019.11.134
54.
Giglio
,
C. A.
, and
Volpon
,
J. B.
,
2007
, “
Development and Evaluation of Thoracic Kyphosis and Lumbar Lordosis During Growth
,”
J Child Orthop.
, 1(3), pp. 187–193.10.1007/s11832-007-0033-5
55.
White
,
A.
,
1990
,
Clinical Biomechanics of the Spine
,
J. B. Lippincott
,
Philadelphia, PA
.
56.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.10.1097/00007632-199904150-00005
57.
Wilke
,
H.-J.
,
Herkommer
,
A.
,
Werner
,
K.
, and
Liebsch
,
C.
,
2020
, “
In Vitro Analysis of the Intradiscal Pressure of the Thoracic Spine.
,”
Front. Bioeng. Biotechnol.
,
8
, p.
614
.10.3389/fbioe.2020.00614
58.
Cortes
,
D. H.
,
Jacobs
,
N. T.
,
Delucca
,
J. F.
, and
Elliott
,
D. M.
,
2014
, “
Elastic, Permeability and Swelling Properties of Human Intervertebral Disc Tissues: A Benchmark for Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
2088
2094
.10.1016/j.jbiomech.2013.12.021
59.
D'Andrea
,
C. R.
,
Alfraihat
,
A.
,
Singh
,
A.
,
Anari
,
J. B.
,
Cahill
,
P. J.
,
Schaer
,
T.
,
Snyder
,
B. D.
,
Elliott
,
D.
, and
Balasubramanian
,
S.
,
2021
, “
Part 1. Review and Meta‐Analysis of Studies on Modulation of Longitudinal Bone Growth and Growth Plate Activity: A Macro‐Scale Perspective
,”
J. Orthop. Res.
,
39
(
5
), pp.
907
918
.10.1002/jor.24976
60.
D'Andrea
,
C. R.
,
Alfraihat
,
A.
,
Singh
,
A.
,
Anari
,
J. B.
,
Cahill
,
P. J.
,
Schaer
,
T.
,
Snyder
,
B. D.
,
Elliott
,
D.
, and
Balasubramanian
,
S.
,
2021
, “
Part 2. Review and Meta‐Analysis of Studies on Modulation of Longitudinal Bone Growth and Growth Plate Activity: A Micro‐Scale Perspective
,”
J. Orthop. Res.
,
39
(
5
), pp.
919
928
.10.1002/jor.24992
61.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.10.1097/00007632-199905150-00014
62.
Stokes
,
I. A.
,
Aronsson
,
D. D.
,
Dimock
,
A. N.
,
Cortright
,
V.
, and
Beck
,
S.
,
2006
, “
Endochondral Growth in Growth Plates of Three Species at Two Anatomical Locations Modulated by Mechanical Compression and Tension
,”
J. Orthop. Res.
,
24
(
6
), pp.
1327
1334
.10.1002/jor.20189
63.
Bianco
,
R.-J.
,
Arnoux
,
P.-J.
,
Wagnac
,
E.
,
Mac-Thiong
,
J.-M.
, and
Aubin
,
C.-É.
,
2017
, “
Minimizing Pedicle Screw Pullout Risks.
,”
Clin. Spine Surg.
,
30
(
3
), pp.
E226
E232
.10.1097/BSD.0000000000000151
64.
Alfraihat
,
A.
,
Olson
,
J. C.
,
Snyder
,
B. D.
,
Cahill
,
P. J.
, and
Balasubramanian
,
S.
,
2020
, “
Thoracic Vertebral Morphology in Normal and Scoliosis Deformity in Skeletally Immature Rabbits: A Longitudinal Study
,”
JOR Spine
,
3
(
4
), p. e1118.10.1002/jsp2.1118
65.
Mandel
,
W.
,
Turcot
,
O.
,
Knez
,
D.
,
Parent
,
S.
, and
Kadoury
,
S.
,
2019
, “
Prediction Outcomes for Anterior Vertebral Body Growth Modulation Surgery From Discriminant Spatiotemporal Manifolds
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
9
), pp.
1565
1575
.10.1007/s11548-019-02041-w
66.
Viraraghavan
,
G.
,
2019
, “
Development of Deformity Specific Finite Element Models for Surgical Simulation of Anterior Vertebral Body Tether for Treating Scoliosis in Pediatric Subjects
,”
Master's thesis
, Drexel University, Philadelphia, PA.https://drexel.edu/graduatecollege/news-events/events/details/?eid=24809&iid=69947
67.
D'Andrea
,
C. R.
,
2020
, “Prediction of Anterior Vertebral Body Tethering Outcomes With Patient-Specific Finite Element Modeling,”
Master's thesis
,
Drexel University
,
Philadelphia, PA
.https://drexel.edu/graduatecollege/news-events/events/details/?eid=30667&iid=81753
68.
López-Valdés
,
F. J.
,
Riley
,
P. O.
,
Lessley
,
D. J.
,
Arbogast
,
K. B.
,
Seacrist
,
T.
,
Balasubramanian
,
S.
,
Maltese
,
M.
, and
Kent
,
R. W.
,
2014
, “
The Six Degrees of Freedom Motion of the Human Head, Spine, and Pelvis in a Frontal Impact
,”
Traffic Injury Prev.
, 15(3), pp.
294
301
.10.1080/15389588.2013.817668
69.
Lopez-Valdes
,
F.
,
Seacrist
,
T.
,
Balasubramanian
,
S.
,
Maltese
,
M. R.
,
Arbogast
,
K. B.
,
Tanji
,
H.
,
Higuchi
,
K.
, and
Kent
,
R.
,
2011
, “
Comparing the Kinematics of the Head and Spine Between Volunteers and PMHS: A Methodology to Estimate the Kinematics of Pediatric Occupants in a Frontal Impact
,”
Proceedings of International Research Conference on the Biomechanics of Impact
, IRC-11-71, Krakow, Poland, Sept. 14–16.https://www.researchgate.net/publication/287597548_Comparing_the_kinematics_of_the_head_and_spine_between_volunteers_and_PMHS_A_Methodology_to_estimate_the_kinematics_of_pediatric_occupants_in_a_frontal_impact
70.
Maltese
,
M. R.
,
Arbogast
,
K. B.
,
Nadkarni
,
V.
,
Berg
,
R.
,
Balasubramanian
,
S.
,
Seacrist
,
T.
,
Kent
,
R. W.
,
Parent
,
D. P.
,
Craig
,
M.
, and
Ridella
,
S. A.
,
2010
, “
Incorporation of CPR Data Into ATD Chest Impact Response Requirements
,”
Annals of Advances in Automotive Medicine/Annual Scientific Conference
, Vol. 54, Association for the Advancement of Automotive Medicine, Las Vegas, NV, Oct. 17–20, pp.
79
88
.https://www.researchgate.net/publication/47678174_Incorporation_of_CPR_Data_into_ATD_Chest_Impact_Response_Requirements
You do not currently have access to this content.