Abstract

Shear-induced platelet activation is one of the critical outcomes when blood is exposed to elevated shear stress. Excessively activated platelets in the circulation can lead to thrombus formation and platelet consumption, resulting in serious adverse events such as thromboembolism and bleeding. While experimental observations reveal that it is related to the shear stress level and exposure time, the underlying mechanism of shear-induced platelet activation is not fully understood. Various models have been proposed to relate shear stress levels to platelet activation, yet most are modified from the empirically calibrated power-law model. Newly developed multiscale platelet models are tested as a promising approach to capture a single platelet's dynamic shape during activation, but it would be computationally expensive to employ it for a large-scale analysis. This paper summarizes the current numerical models used to study the shear-induced platelet activation and their computational applications in the risk assessment of a particular flow pattern and clot formation prediction.

References

1.
Minors
,
D. S.
,
2007
, “
Haemostasis, Blood Platelets and Coagulation
,”
Anaesth. Intensive Care Med.
,
8
(
5
), pp.
214
216
.10.1016/j.mpaic.2007.02.008
2.
Engelmann
,
B.
, and
Massberg
,
S.
,
2013
, “
Thrombosis as an Intravascular Effector of Innate Immunity
,”
Nat. Rev. Immunol.
,
13
(
1
), pp.
34
45
.10.1038/nri3345
3.
Clemetson
,
K. J.
,
2012
, “
Platelets and Primary Haemostasis
,”
Thromb. Res.
,
129
(
3
), pp.
220
224
.10.1016/j.thromres.2011.11.036
4.
O'Brien
,
J.
,
1990
, “
Shear-Induced Platelet Aggregation
,”
Lancet
,
335
(
8691
), pp.
711
713
.10.1016/0140-6736(90)90815-M
5.
Hellums
,
J.
,
Peterson
,
D.
,
Stathopoulos
,
N.
,
Moake
,
J.
, and
Giorgio
,
T.
,
1987
, “
Studies on the Mechanisms of Shear-Induced Platelet Activation
,”
Cerebral Ischemia and Hemorheology
,
Springer
, Berlin, pp.
80
89
.
6.
Holme
,
P. A.
,
Ørvim
,
U.
,
Hamers
,
M. J.
,
Solum
,
N. O.
,
Brosstad
,
F. R.
,
Barstad
,
R. M.
, and
Sakariassen
,
K. S.
,
1997
, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
(
4
), pp.
646
653
.10.1161/01.ATV.17.4.646
7.
Thamsen
,
B.
,
Blümel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.10.1111/aor.12542
8.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.10.1115/1.4007092
9.
Burgreen
,
G. W.
,
Antaki
,
J. F.
,
Wu
,
Z.
, and
Holmes
,
A. J.
,
2001
, “
Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps
,”
Artif. Organs
,
25
(
5
), pp.
336
340
.10.1046/j.1525-1594.2001.025005336.x
10.
Song
,
X.
,
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
,
2003
, “
Computational Fluid Dynamics Prediction of Blood Damage in a Centrifugal Pump
,”
Artif. Organs
,
27
(
10
), pp.
938
941
.10.1046/j.1525-1594.2003.00026.x
11.
Yu
,
H.
,
Engel
,
S.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2017
, “
A Review of Hemolysis Prediction Models for Computational Fluid Dynamics
,”
Artif. Organs
,
41
(
7
), pp.
603
621
.10.1111/aor.12871
12.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.10.1097/MAT.0b013e318254833b
13.
Giersiepen
,
M.
,
Wurzinger
,
L.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.10.1177/039139889001300507
14.
Owen
,
D. G.
,
de Oliveira
,
D. C.
,
Qian
,
S.
,
Green
,
N. C.
,
Shepherd
,
D. E.
, and
Espino
,
D. M.
,
2020
, “
Impact of Side-Hole Geometry on the Performance of Hemodialysis Catheter Tips: A Computational Fluid Dynamics Assessment
,”
PLoS One
,
15
(
8
), p.
e0236946
.10.1371/journal.pone.0236946
15.
Fuchs
,
G.
,
Berg
,
N.
,
Broman
,
L. M.
, and
Wittberg
,
L. P.
,
2018
, “
Flow-Induced Platelet Activation in Components of the Extracorporeal Membrane Oxygenation Circuit
,”
Sci. Rep.
,
8
(
1
), p.
13985
.10.1038/s41598-018-32247-y
16.
Ding
,
J.
,
Chen
,
Z.
,
Niu
,
S.
,
Zhang
,
J.
,
Mondal
,
N. K.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2015
, “
Quantification of Shear‐Induced Platelet Activation: High Shear Stresses for Short Exposure Time
,”
Artif. Organs
,
39
(
7
), pp.
576
583
.10.1111/aor.12438
17.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
18.
Anand
,
M.
, and
Rajagopal
,
K. R.
,
2002
, “
A Mathematical Model to Describe the Change in the Constitutive Character of Blood Due to Platelet Activation
,”
C. R. Mec.
,
330
(
8
), pp.
557
562
.10.1016/S1631-0721(02)01501-2
19.
Bodnár
,
T.
,
2014
, “
On the Eulerian Formulation of a Stress Induced Platelet Activation Function
,”
Math. Biosci.
,
257
, pp.
91
95
.10.1016/j.mbs.2014.06.010
20.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow‐Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
21.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2008
, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
64
72
.10.1097/MAT.0b013e31815d6898
22.
Wu
,
W.-T.
,
Zhussupbekov
,
M.
,
Aubry
,
N.
,
Antaki
,
J. F.
, and
Massoudi
,
M.
,
2020
, “
Simulation of Thrombosis in a Stenotic Microchannel: The Effects of vWF-Enhanced Shear Activation of Platelets
,”
Int. J. Eng. Sci.
,
147
, p.
103206
.10.1016/j.ijengsci.2019.103206
23.
Chesnutt
,
J. K.
, and
Han
,
H.-C.
,
2013
, “
Platelet Size and Density Affect Shear-Induced Thrombus Formation in Tortuous Arterioles
,”
Phys. Biol.
,
10
(
5
), p.
056003
.10.1088/1478-3975/10/5/056003
24.
Zhang
,
P.
,
Sheriff
,
J.
,
Einav
,
S.
,
Slepian
,
M. J.
,
Deng
,
Y.
, and
Bluestein
,
D.
,
2021
, “
A Predictive Multiscale Model for Simulating Flow-Induced Platelet Activation: Correlating In Silico Results With In Vitro Results
,”
J. Biomech.
,
117
, p.
110275
.10.1016/j.jbiomech.2021.110275
25.
Zhang
,
P.
,
Zhang
,
L.
,
Slepian
,
M. J.
,
Deng
,
Y.
, and
Bluestein
,
D.
,
2017
, “
A Multiscale Biomechanical Model of Platelets: Correlating With In-Vitro Results
,”
J. Biomech.
,
50
, pp.
26
33
.10.1016/j.jbiomech.2016.11.019
26.
Nikfar
,
M.
,
Razizadeh
,
M.
,
Zhang
,
J.
,
Paul
,
R.
,
Wu
,
Z. J.
, and
Liu
,
Y.
,
2020
, “
Prediction of Mechanical Hemolysis in Medical Devices Via a Lagrangian Strain‐Based Multiscale Model
,”
Artif. Organs
,
44
(
8
), pp.
E348
E368
.10.1111/aor.13663
27.
Levin
,
J.
,
2019
, “
The Evolution of Mammalian Platelets
,”
Platelets
,
Elsevier
, Academic Press, Cambridge, MA, pp.
1
23
.
28.
Quinn
,
M.
,
Fitzgerald
,
D.
, and
Cox
,
D.
,
2007
,
Platelet Function: Assessment, Diagnosis, and Treatment
,
Springer Science & Business Media
, Berlin.
29.
Cito
,
S.
,
Mazzeo
,
M. D.
, and
Badimon
,
L.
,
2013
, “
A Review of Macroscopic Thrombus Modeling Methods
,”
Thromb. Res.
,
131
(
2
), pp.
116
124
.10.1016/j.thromres.2012.11.020
30.
Adams
,
R. L.
, and
Bird
,
R. J.
,
2009
, “
Coagulation Cascade and Therapeutics Update: Relevance to Nephrology. Part 1: Overview of Coagulation, Thrombophilias and History of Anticoagulants
,”
Nephrology
,
14
(
5
), pp.
462
470
.10.1111/j.1440-1797.2009.01128.x
31.
Yesudasan
,
S.
, and
Averett
,
R. D.
,
2019
, “
Recent Advances in Computational Modeling of Fibrin Clot Formation: A Review
,”
Comput. Biol. Chem.
,
83
, p.
107148
.10.1016/j.compbiolchem.2019.107148
32.
White
,
J. G.
, and
Rao
,
G.
,
1998
, “
Microtubule Coils Versus the Surface Membrane Cytoskeleton in Maintenance and Restoration of Platelet Discoid Shape
,”
Am. J. Pathol.
,
152
(
2
), pp.
597
609
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1857955/
33.
Kunert
,
S.
,
Meyer
,
I.
,
Fleischhauer
,
S.
,
Wannack
,
M.
,
Fiedler
,
J.
,
Shivdasani
,
R. A.
, and
Schulze
,
H.
,
2009
, “
The Microtubule Modulator RanBP10 Plays a Critical Role in Regulation of Platelet Discoid Shape and Degranulation
,”
Blood
,
114
(
27
), pp.
5532
5540
.10.1182/blood-2009-04-216804
34.
White
,
J. G.
, and
Estensen
,
R. D.
,
1972
, “
Degranulation of Discoid Platelets
,”
Am. J. Pathol.
,
68
(
2
), pp.
289
302
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2032688/
35.
Italiano
,
J. E.
, Jr.
,
Bergmeier
,
W.
,
Tiwari
,
S.
,
Falet
,
H.
,
Hartwig
,
J. H.
,
Hoffmeister
,
K. M.
,
André
,
P.
,
Wagner
,
D. D.
, and
Shivdasani
,
R. A.
,
2003
, “
Mechanisms and Implications of Platelet Discoid Shape
,”
Blood
,
101
(
12
), pp.
4789
4796
.10.1182/blood-2002-11-3491
36.
Bearer
,
E.
,
Prakash
,
J.
, and
Li
,
Z.
,
2002
, “
Actin Dynamics in Platelets
,”
Int. Rev. Cytol.
,
217
, pp.
137
182
.10.1016/S0074-7696(02)17014-8
37.
Allen
,
R. D.
,
Zacharski
,
L. R.
,
Widirstky
,
S. T.
,
Rosenstein
,
R.
,
Zaitlin
,
L. M.
, and
Burgess
,
D. R.
,
1979
, “
Transformation and Motility of Human Platelets: Details of the Shape Change and Release Reaction Observed by Optical and Electron Microscopy
,”
J. Cell Biol.
,
83
(
1
), pp.
126
142
.10.1083/jcb.83.1.126
38.
Shin
,
E.-K.
,
Park
,
H.
,
Noh
,
J.-Y.
,
Lim
,
K.-M.
, and
Chung
,
J.-H.
,
2017
, “
Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs
,”
Biomol. Ther.
,
25
(
3
), pp.
223
230
.10.4062/biomolther.2016.138
39.
White
,
J. G.
,
2005
, “
Platelets Are Covercytes, Not Phagocytes: Uptake of Bacteria Involves Channels of the Open Canalicular System
,”
Platelets
,
16
(
2
), pp.
121
131
.10.1080/09537100400007390
40.
Ramadori
,
P.
,
Klag
,
T.
,
Malek
,
N. P.
, and
Heikenwalder
,
M.
,
2019
, “
Platelets in Chronic Liver Disease, From Bench to Bedside
,”
JHEP Rep.
,
1
(
6
), pp.
448
459
.10.1016/j.jhepr.2019.10.001
41.
Jesty
,
J.
,
Yin
,
W.
,
Perrotta
,
P.
, and
Bluestein
,
D.
,
2003
, “
Platelet Activation in a Circulating Flow Loop: Combined Effects of Shear Stress and Exposure Time
,”
Platelets
,
14
(
3
), pp.
143
149
.10.1080/0953710031000092839
42.
Hellums
,
J. D.
,
1994
, “
1993 Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
,
22
(
5
), pp.
445
455
.10.1007/BF02367081
43.
Ramstack
,
J.
,
Zuckerman
,
L.
, and
Mockros
,
L.
,
1979
, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
,
12
(
2
), pp.
113
125
.10.1016/0021-9290(79)90150-7
44.
Reinthaler
,
M.
,
Johansson
,
J. B.
,
Braune
,
S.
,
Al-Hindwan
,
H. S. A.
,
Lendlein
,
A.
, and
Jung
,
F.
,
2019
, “
Shear-Induced Platelet Adherence and Activation in an In-Vitro Dynamic Multiwell-Plate System
,”
Clin. Hemorheol. Microcirc.
,
71
(
2
), pp.
183
191
.10.3233/CH-189410
45.
Zhang
,
J.-N.
,
Bergeron
,
A. L.
,
Yu
,
Q.
,
Sun
,
C.
,
McIntire
,
L. V.
,
López
,
J. A.
, and
Dong
,
J.-F.
,
2002
, “
Platelet Aggregation and Activation Under Complex Patterns of Shear Stress
,”
Thromb. Haemostasis
,
88
(
11
), pp.
817
821
.10.1055/s-0037-1613308
46.
Giorgio
,
T.
, and
Hellums
,
J.
,
1988
, “
A Cone and Plate Viscometer for the Continuous Measurement of Blood Platelet Activation
,”
Biorheology
,
25
(
4
), pp.
605
624
.10.3233/BIR-1988-25402
47.
Ruggeri
,
Z. M.
,
2002
, “
Platelets in Atherothrombosis
,”
Nat. Med.
,
8
(
11
), pp.
1227
1234
.10.1038/nm1102-1227
48.
Hansen
,
C. E.
,
Qiu
,
Y.
,
McCarty
,
O. J.
, and
Lam
,
W. A.
,
2018
, “
Platelet Mechanotransduction
,”
Annu. Rev. Biomed. Eng.
,
20
(
1
), pp.
253
275
.10.1146/annurev-bioeng-062117-121215
49.
Konstantopoulos
,
K.
,
Wu
,
K.
,
Udden
,
M.
,
Banez
,
E.
,
Shattil
,
S.
, and
Hellums
,
J.
,
1995
, “
Flow Cytometric Studies of Platelet Responses to Shear Stress in Whole Blood
,”
Biorheology
,
32
(
1
), pp.
73
93
.10.3233/BIR-1995-32106
50.
McCrary
,
J. K.
,
Nolasco
,
L. H.
,
Hellums
,
J. D.
,
Kroll
,
M. H.
,
Turner
,
N. A.
, and
Moake
,
J. L.
,
1995
, “
Direct Demonstration of Radiolabeled von Willebrand Factor Binding to Platelet Glycoprotein Ib and IIb-IIIa in the Presence of Shear Stress
,”
Ann. Biomed. Eng.
,
23
(
6
), pp.
787
793
.10.1007/BF02584477
51.
Reininger
,
A. J.
,
Heijnen
,
H. F.
,
Schumann
,
H.
,
Specht
,
H. M.
,
Schramm
,
W.
, and
Ruggeri
,
Z. M.
,
2006
, “
Mechanism of Platelet Adhesion to von Willebrand Factor and Microparticle Formation Under High Shear Stress
,”
Blood
,
107
(
9
), pp.
3537
3545
.10.1182/blood-2005-02-0618
52.
Kroll
,
M. H.
,
Hellums
,
J. D.
,
McIntire
,
L. V.
,
Schafer
,
A. I.
, and
Moake
,
J. L.
,
1996
, “
Platelets and Shear Stress
,”
Blood
,
88
(
5
), pp.
1525
1541
.
53.
Slepian
,
M. J.
,
Sheriff
,
J.
,
Hutchinson
,
M.
,
Tran
,
P.
,
Bajaj
,
N.
,
Garcia
,
J. G.
,
Saavedra
,
S. S.
, and
Bluestein
,
D.
,
2017
, “
Shear-Mediated Platelet Activation in the Free Flow: Perspectives on the Emerging Spectrum of Cell Mechanobiological Mechanisms Mediating Cardiovascular Implant Thrombosis
,”
J. Biomech.
,
50
, pp.
20
25
.10.1016/j.jbiomech.2016.11.016
54.
Roka-Moiia
,
Y.
,
Ammann
,
K. R.
,
Miller-Gutierrez
,
S.
,
Sweedo
,
A.
,
Palomares
,
D.
,
Italiano
,
J.
,
Sheriff
,
J.
,
Bluestein
,
D.
, and
Slepian
,
M. J.
,
2021
, “
Shear-Mediated Platelet Activation in the Free Flow II: Evolving Mechanobiological Mechanisms Reveal an Identifiable Signature of Activation and a Bi-Directional Platelet Dyscrasia With Thrombotic and Bleeding Features
,”
J. Biomech.
,
123
, p.
110415
.10.1016/j.jbiomech.2021.110415
55.
Wurzinger
,
L.
,
Opitz
,
R.
,
Wolf
,
M.
, and
Schmid-Schönbein
,
H.
,
1985
, “
‘Shear Induced Platelet Activation’—A Critical Reappraisal
,”
Biorheology
,
22
(
5
), pp.
399
413
.10.3233/BIR-1985-22504
56.
Wurzinger
,
L. J.
,
1990
, “
Histophysiology of the Circulating Platelet
,”
Adv. Anat., Embryol., Cell Biol.
,
120
, pp.
1
96
.10.1007/978-3-642-75482-1
57.
Sheriff
,
J.
,
Bluestein
,
D.
,
Girdhar
,
G.
, and
Jesty
,
J.
,
2010
, “
High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1442
1450
.10.1007/s10439-010-9936-2
58.
Goncalves
,
I.
,
Nesbitt
,
W. S.
,
Yuan
,
Y.
, and
Jackson
,
S. P.
,
2005
, “
Importance of Temporal Flow Gradients and Integrin αIIbβ3 Mechanotransduction for Shear Activation of Platelets
,”
J. Biol. Chem.
,
280
(
15
), pp.
15430
15437
.10.1074/jbc.M410235200
59.
Dorsam
,
R. T.
, and
Kunapuli
,
S. P.
,
2004
, “
Central Role of the P2Y 12 Receptor in Platelet Activation
,”
J. Clin. Invest.
,
113
(
3
), pp.
340
345
.10.1172/JCI20986
60.
Schneider
,
S.
,
Nuschele
,
S.
,
Wixforth
,
A.
,
Gorzelanny
,
C.
,
Alexander-Katz
,
A.
,
Netz
,
R.
, and
Schneider
,
M. F.
,
2007
, “
Shear-Induced Unfolding Triggers Adhesion of von Willebrand Factor Fibers
,”
Proc. Natl. Acad. Sci.
,
104
(
19
), pp.
7899
7903
.10.1073/pnas.0608422104
61.
Slaughter
,
M. S.
,
Pagani
,
F. D.
,
Rogers
,
J. G.
,
Miller
,
L. W.
,
Sun
,
B.
,
Russell
,
S. D.
,
Starling
,
R. C.
, et al.,
2010
, “
Clinical Management of Continuous-Flow Left Ventricular Assist Devices in Advanced Heart Failure
,”
J. Heart Lung Transplant.
,
29
(
4
), pp.
S1
S39
.10.1016/j.healun.2010.01.011
62.
Birks
,
E. J.
,
2010
, “
Left Ventricular Assist Devices
,”
Heart
,
96
(
1
), pp.
63
71
.10.1136/hrt.2007.130740
63.
Almond
,
C. S.
,
Singh
,
T. P.
,
Gauvreau
,
K.
,
Piercey
,
G. E.
,
Fynn-Thompson
,
F.
,
Rycus
,
P. T.
,
Bartlett
,
R. H.
, and
Thiagarajan
,
R. R.
,
2011
, “
Extracorporeal Membrane Oxygenation for Bridge to Heart Transplantation Among Children in the United States: Analysis of Data From the Organ Procurement and Transplant Network and Extracorporeal Life Support Organization Registry
,”
Circulation
,
123
(
25
), pp.
2975
2984
.10.1161/CIRCULATIONAHA.110.991505
64.
Abrams
,
D.
,
Combes
,
A.
, and
Brodie
,
D.
,
2014
, “
Extracorporeal Membrane Oxygenation in Cardiopulmonary Disease in Adults
,”
J. Am. Coll. Cardiol.
,
63
(
25
), pp.
2769
2778
.10.1016/j.jacc.2014.03.046
65.
Sakota
,
D.
,
Sakamoto
,
R.
,
Sobajima
,
H.
,
Yokoyama
,
N.
,
Waguri
,
S.
,
Ohuchi
,
K.
, and
Takatani
,
S.
,
2008
, “
Mechanical Damage of Red Blood Cells by Rotary Blood Pumps: Selective Destruction of Aged Red Blood Cells and Subhemolytic Trauma
,”
Artif. Organs
,
32
(
10
), pp.
785
791
.10.1111/j.1525-1594.2008.00631.x
66.
Sohrabi
,
S.
, and
Liu
,
Y.
,
2017
, “
A Cellular Model of Shear‐Induced Hemolysis
,”
Artif. Organs
,
41
(
9
), pp.
E80
E91
.10.1111/aor.12832
67.
van der Meer
,
F. J.
,
Rosendaal
,
F. R.
,
Vandenbroucke
,
J. P.
, and
Briët
,
E.
,
1993
, “
Bleeding Complications in Oral Anticoagulant Therapy: An Analysis of Risk Factors
,”
Arch. Intern. Med.
,
153
(
13
), pp.
1557
1562
.10.1001/archinte.1993.00410130073007
68.
Eckman
,
P. M.
, and
John
,
R.
,
2012
, “
Bleeding and Thrombosis in Patients With Continuous-Flow Ventricular Assist Devices
,”
Circulation
,
125
(
24
), pp.
3038
3047
.10.1161/CIRCULATIONAHA.111.040246
69.
Schafer
,
A. I.
,
1984
, “
Bleeding and Thrombosis in the Myeloproliferative Disorders
,”
Blood
,
64
(
1
), pp.
1
12
.10.1182/blood.V64.1.1.1
70.
Mokadam
,
N. A.
,
Andrus
,
S.
, and
Ungerleider
,
A.
,
2011
, “
Thrombus Formation in a HeartMate II
,”
Eur. J. Cardio-Thorac. Surg.
,
39
(
3
), pp.
414
414
.10.1016/j.ejcts.2010.06.015
71.
Chen
,
Z.
,
Mondal
,
N. K.
,
Ding
,
J.
,
Gao
,
J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2015
, “
Shear-Induced Platelet Receptor Shedding by Non-Physiological High Shear Stress With Short Exposure Time: Glycoprotein Ibα and Glycoprotein VI
,”
Thromb. Res.
,
135
(
4
), pp.
692
698
.10.1016/j.thromres.2015.01.030
72.
Behbahani
,
M.
,
Behr
,
M.
,
Hormes
,
M.
,
Steinseifer
,
U.
,
Arora
,
D.
,
Coronado
,
O.
, and
Pasquali
,
M.
,
2009
, “
A Review of Computational Fluid Dynamics Analysis of Blood Pumps
,”
Eur. J. Appl. Math.
,
20
(
4
), pp.
363
397
.10.1017/S0956792509007839
73.
Feng
,
R.
,
Xenos
,
M.
,
Girdhar
,
G.
,
Kang
,
W.
,
Davenport
,
J. W.
,
Deng
,
Y.
, and
Bluestein
,
D.
,
2012
, “
Viscous Flow Simulation in a Stenosis Model Using Discrete Particle Dynamics: A Comparison Between DPD and CFD
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
119
129
.10.1007/s10237-011-0297-z
74.
Wang
,
L.
,
Chen
,
Z.
,
Zhang
,
J.
,
Zhang
,
X.
, and
Wu
,
Z. J.
,
2020
, “
Modeling Clot Formation of Shear-Injured Platelets in Flow by a Dissipative Particle Dynamics Method
,”
Bull. Math. Biol.
,
82
(
7
), p.
83
.10.1007/s11538-020-00760-9
75.
Ye
,
T.
,
Phan-Thien
,
N.
, and
Lim
,
C. T.
,
2016
, “
Particle-Based Simulations of Red Blood Cells—A Review
,”
J. Biomech.
,
49
(
11
), pp.
2255
2266
.10.1016/j.jbiomech.2015.11.050
76.
Shahriari
,
S.
,
Maleki
,
H.
,
Hassan
,
I.
, and
Kadem
,
L.
,
2012
, “
Evaluation of Shear Stress Accumulation on Blood Components in Normal and Dysfunctional Bileaflet Mechanical Heart Valves Using Smoothed Particle Hydrodynamics
,”
J. Biomech.
,
45
(
15
), pp.
2637
2644
.10.1016/j.jbiomech.2012.08.009
77.
Godunov
,
S.
, and
Bohachevsky
,
I.
,
1959
, “
Finite Difference Method for Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics
,”
Mat. Sb.
,
47
(
3
), pp.
271
306
.https://hal.archives-ouvertes.fr/hal-01620642/document
78.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics
,
Springer
, Berlin.
79.
Han
,
D.
,
Liu
,
G. R.
, and
Abdallah
,
S.
,
2019
, “
An Eulerian–Lagrangian–Lagrangian Method for Solving Thin Moving Rigid Body Immersed in the Fluid
,”
Comput. Fluids
,
179
, pp.
687
701
.10.1016/j.compfluid.2018.12.006
80.
Han
,
D.
,
Liu
,
G. R.
, and
Abdallah
,
S.
,
2020
, “
An Eulerian-Lagrangian-Lagrangian Method for 2D Fluid-Structure Interaction Problem With a Thin Flexible Structure Immersed in Fluids
,”
Comput. Struct.
,
228
, p.
106179
.10.1016/j.compstruc.2019.106179
81.
Han
,
D.
,
Liu
,
G. R.
, and
Abdallah
,
S.
,
2020
, “
An Eulerian-Lagrangian-Lagrangian Method for Solving Fluid-Structure Interaction Problems With Bulk Solids
,”
J. Comput. Phys.
,
405
, p.
109164
.10.1016/j.jcp.2019.109164
82.
Greifzu
,
F.
,
Kratzsch
,
C.
,
Forgber
,
T.
,
Lindner
,
F.
, and
Schwarze
,
R.
,
2016
, “
Assessment of Particle-Tracking Models for Dispersed Particle-Laden Flows Implemented in OpenFOAM and ANSYS FLUENT
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
30
43
.10.1080/19942060.2015.1104266
83.
Liu
,
M.
,
Liu
,
G.
,
Zhou
,
L.
, and
Chang
,
J.
,
2015
, “
Dissipative Particle Dynamics (DPD): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
22
(
4
), pp.
529
556
.10.1007/s11831-014-9124-x
84.
Tosenberger
,
A.
,
Ataullakhanov
,
F.
,
Bessonov
,
N.
,
Panteleev
,
M.
,
Tokarev
,
A.
, and
Volpert
,
V.
,
2013
, “
Modelling of Thrombus Growth in Flow With a DPD-PDE Method
,”
J. Theor. Biol.
,
337
, pp.
30
41
.10.1016/j.jtbi.2013.07.023
85.
Gao
,
C.
,
Zhang
,
P.
,
Marom
,
G.
,
Deng
,
Y.
, and
Bluestein
,
D.
,
2017
, “
Reducing the Effects of Compressibility in DPD-Based Blood Flow Simulations Through Severe Stenotic Microchannels
,”
J. Comput. Phys.
,
335
, pp.
812
827
.10.1016/j.jcp.2017.01.062
86.
Zhang
,
H.
,
Tan
,
Y.
,
Shu
,
S.
,
Niu
,
X.
,
Trias
,
F. X.
,
Yang
,
D.
,
Li
,
H.
, and
Sheng
,
Y.
,
2014
, “
Numerical Investigation on the Role of Discrete Element Method in Combined LBM–IBM–DEM Modeling
,”
Comput. Fluids
,
94
, pp.
37
48
.10.1016/j.compfluid.2014.01.032
87.
Cheng
,
L.
,
Tan
,
J.
,
Yun
,
Z.
,
Wang
,
S.
, and
Yu
,
Z.
,
2021
, “
Analysis of Flow Field and Hemolysis Index in Axial Flow Blood Pump by Computational Fluid Dynamics–Discrete Element Method
,”
Int. J. Artif. Organs
,
44
(
1
), pp.
46
54
.10.1177/0391398820917145
88.
Miyazaki
,
H.
, and
Yamaguchi
,
T.
,
2003
, “
Formation and Destruction of Primary Thrombi Under the Influence of Blood Flow and von Willebrand Factor Analyzed by a Discrete Element Method
,”
Biorheology
,
40
(
1, 2, 3
), pp.
265
272
.https://content.iospress.com/articles/biorheology/bir188
89.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.10.1046/j.1525-1594.2001.025005341.x
90.
Bludszuweit
,
C.
,
1995
, “
Three‐Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump
,”
Artif. Organs
,
19
(
7
), pp.
590
596
.10.1111/j.1525-1594.1995.tb02386.x
91.
Faghih
,
M. M.
, and
Keith Sharp
,
M.
,
2016
, “
Extending the Power-Law Hemolysis Model to Complex Flows
,”
ASME J. Biomech. Eng.
,
138
(
12
), p.
124504
.10.1115/1.4034786
92.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2019
, “
On Eulerian Versus Lagrangian Models of Mechanical Blood Damage and the Linearized Damage Function
,”
Artif. Organs
,
43
(
7
), pp.
681
687
.10.1111/aor.13423
93.
Goubergrits
,
L.
,
2006
, “
Numerical Modeling of Blood Damage: Current Status, Challenges and Future Prospects
,”
Expert Rev. Med. Devices
,
3
(
5
), pp.
527
531
.10.1586/17434440.3.5.527
94.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power‐Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.10.1111/j.1525-1594.2004.00015.x
95.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1279
1296
.10.1007/s10439-013-0758-x
96.
Garon
,
A.
, and
Farinas
,
M. I.
,
2004
, “
Fast Three‐Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.10.1111/j.1525-1594.2004.00026.x
97.
Grigioni
,
M.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Del Gaudio
,
C.
,
2005
, “
A Novel Formulation for Blood Trauma Prediction by a Modified Power-Law Mathematical Model
,”
Biomech. Model. Mechanobiol.
,
4
(
4
), pp.
249
260
.10.1007/s10237-005-0005-y
98.
Liu
,
G.-M.
,
Jin
,
D.-H.
,
Chen
,
H.-B.
,
Hou
,
J.-F.
,
Zhang
,
Y.
,
Sun
,
H.-S.
,
Zhou
,
J.-Y.
,
Hu
,
S.-S.
, and
Gui
,
X.-M.
,
2019
, “
Numerical Investigation of the Influence of a Bearing/Shaft Structure in an Axial Blood Pump on the Potential for Device Thrombosis
,”
Int. J. Artif. Organs
,
42
(
4
), pp.
182
189
.10.1177/0391398818823769
99.
Yin
,
W.
,
Alemu
,
Y.
,
Affeld
,
K.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2004
, “
Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1058
1066
.10.1114/B:ABME.0000036642.21895.3f
100.
Chiu
,
W.-C.
,
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Soares
,
J. S.
,
Einav
,
S.
,
Slepian
,
M.
, and
Bluestein
,
D.
,
2014
, “
Thromboresistance Comparison of the HeartMate II Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized HeartAssist 5 VAD
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021014
.10.1115/1.4026254
101.
Soares
,
J. S.
,
Sheriff
,
J.
, and
Bluestein
,
D.
,
2013
, “
A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1127
1141
.10.1007/s10237-013-0469-0
102.
Hedayat
,
M.
, and
Borazjani
,
I.
,
2019
, “
Comparison of Platelet Activation Through Hinge Vs Bulk Flow in Bileaflet Mechanical Heart Valves
,”
J. Biomech.
,
83
, pp.
280
290
.10.1016/j.jbiomech.2018.12.003
103.
Hedayat
,
M.
,
Asgharzadeh
,
H.
, and
Borazjani
,
I.
,
2017
, “
Platelet Activation of Mechanical Versus Bioprosthetic Heart Valves During Systole
,”
J. Biomech.
,
56
, pp.
111
116
.10.1016/j.jbiomech.2017.03.002
104.
Consolo
,
F.
,
Sheriff
,
J.
,
Gorla
,
S.
,
Magri
,
N.
,
Bluestein
,
D.
,
Pappalardo
,
F.
,
Slepian
,
M. J.
,
Fiore
,
G. B.
, and
Redaelli
,
A.
,
2017
, “
High Frequency Components of Hemodynamic Shear Stress Profiles Are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices
,”
Sci. Rep.
,
7
(
1
), p.
4994
.10.1038/s41598-017-05130-5
105.
Yeleswarapu
,
K. K.
,
Antaki
,
J. F.
,
Kameneva
,
M. V.
, and
Rajagopal
,
K. R.
,
1995
, “
A Mathematical Model for Shear‐Induced Hemolysis
,”
Artif. Organs
,
19
(
7
), pp.
576
582
.10.1111/j.1525-1594.1995.tb02384.x
106.
Anand
,
M.
,
Rajagopal
,
K.
, and
Rajagopal
,
K.
,
2003
, “
A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood
,”
J. Theor. Med.
,
5
(
3–4
), pp.
183
218
.10.1080/10273660412331317415
107.
Anand
,
M.
,
Rajagopal
,
K.
, and
Rajagopal
,
K.
,
2005
, “
A Model for the Formation and Lysis of Blood Clots
,”
Pathophysiol. Haemostasis Thromb.
,
34
(
2–3
), pp.
109
120
.10.1159/000089931
108.
Fogelson
,
A. L.
, and
Neeves
,
K. B.
,
2015
, “
Fluid Mechanics of Blood Clot Formation
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
377
403
.10.1146/annurev-fluid-010814-014513
109.
Fogelson
,
A. L.
,
1984
, “
A Mathematical Model and Numerical Method for Studying Platelet Adhesion and Aggregation During Blood Clotting
,”
J. Comput. Phys.
,
56
(
1
), pp.
111
134
.10.1016/0021-9991(84)90086-X
110.
Chesnutt
,
J. K.
, and
Han
,
H.-C.
,
2011
, “
Tortuosity Triggers Platelet Activation and Thrombus Formation in Microvessels
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121004
.10.1115/1.4005478
111.
Chesnutt
,
J. K.
, and
Han
,
H.-C.
,
2015
, “
Simulation of the Microscopic Process During Initiation of Stent Thrombosis
,”
Comput. Biol. Med.
,
56
, pp.
182
191
.10.1016/j.compbiomed.2014.11.006
112.
Feng
,
Z.-G.
,
Cortina
,
M.
,
Chesnutt
,
J. K.
, and
Han
,
H.-C.
,
2017
, “
Numerical Simulation of Thrombotic Occlusion in Tortuous Arterioles
,”
J. Cardiol. Cardiovasc. Med.
,
2
(
1
), pp.
95
111
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760268/
113.
de Oliveira
,
D. C.
,
Owen
,
D. G.
,
Qian
,
S.
,
Green
,
N. C.
,
Espino
,
D. M.
, and
Shepherd
,
D. E.
,
2021
, “
Computational Fluid Dynamics of the Right Atrium: Assessment of Modelling Criteria for the Evaluation of Dialysis Catheters
,”
PLoS One
,
16
(
2
), p.
e0247438
.10.1371/journal.pone.0247438
114.
Chesnutt
,
J. K.
, and
Han
,
H.-C.
,
2013
, “
Effect of Red Blood Cells on Platelet Activation and Thrombus Formation in Tortuous Arterioles
,”
Front. Bioeng. Biotechnol.
,
1
, p.
18
.10.3389/fbioe.2013.00018
115.
Pushin
,
D. M.
,
Salikhova
,
T. Y.
,
Zlobina
,
K. E.
, and
Guria
,
G. T.
,
2020
, “
Platelet Activation Via Dynamic Conformational Changes of von Willebrand Factor Under Shear
,”
PLoS One
,
15
(
6
), p.
e0234501
.10.1371/journal.pone.0234501
116.
Bark
,
D. L.
, Jr.
, and
Ku
,
D. N.
,
2010
, “
Wall Shear Over High Degree Stenoses Pertinent to Atherothrombosis
,”
J. Biomech.
,
43
(
15
), pp.
2970
2977
.10.1016/j.jbiomech.2010.07.011
117.
Goodman
,
P. D.
,
Barlow
,
E. T.
,
Crapo
,
P. M.
,
Mohammad
,
S. F.
, and
Solen
,
K. A.
,
2005
, “
Computational Model of Device-Induced Thrombosis and Thromboembolism
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
780
797
.10.1007/s10439-005-2951-z
118.
Tambasco
,
M.
, and
Steinman
,
D. A.
,
2003
, “
Path-Dependent Hemodynamics of the Stenosed Carotid Bifurcation
,”
Ann. Biomed. Eng.
,
31
(
9
), pp.
1054
1065
.10.1114/1.1603257
119.
Zhang
,
P.
,
Zhang
,
N.
,
Deng
,
Y.
, and
Bluestein
,
D.
,
2015
, “
A Multiple Time Stepping Algorithm for Efficient Multiscale Modeling of Platelets Flowing in Blood Plasma
,”
J. Comput. Phys.
,
284
, pp.
668
686
.10.1016/j.jcp.2015.01.004
120.
Wu
,
J.
,
Yun
,
B. M.
,
Fallon
,
A. M.
,
Hanson
,
S. R.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2011
, “
Numerical Investigation of the Effects of Channel Geometry on Platelet Activation and Blood Damage
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
897
910
.10.1007/s10439-010-0184-2
121.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Nobili
,
M.
,
Massai
,
D.
,
Montevecchi
,
F. M.
,
Bluestein
,
D.
, and
Redaelli
,
A.
,
2009
, “
Blood Damage Safety of Prosthetic Heart Valves. Shear-Induced Platelet Activation and Local Flow Dynamics: A Fluid–Structure Interaction Approach
,”
J. Biomech.
,
42
(
12
), pp.
1952
1960
.10.1016/j.jbiomech.2009.05.014
122.
Alemu
,
Y.
,
Xenos
,
M.
,
Deng
,
Y.
,
Feng
,
R.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2008
, “
Damage Accumulation Model of Prosthetic Heart Valves in Forward and Reverse Flow Phases
,”
ASME
Paper No. SBC2008-193010.10.1115/SBC2008-193010
123.
Hansen
,
K. B.
,
Arzani
,
A.
, and
Shadden
,
S. C.
,
2015
, “
Mechanical Platelet Activation Potential in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
041005
.10.1115/1.4029580
124.
Zlobina
,
K.
, and
Guria
,
G. T.
,
2016
, “
Platelet Activation Risk Index as a Prognostic Thrombosis Indicator
,”
Sci. Rep.
,
6
(
1
), p.
30508
.10.1038/srep30508
125.
Tan
,
J.
,
Thomas
,
A.
, and
Liu
,
Y.
,
2012
, “
Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation
,”
Soft Matter
,
8
(
6
), pp.
1934
1946
.10.1039/C2SM06391C
126.
Liu
,
Y.
, and
Liu
,
W. K.
,
2006
, “
Rheology of Red Blood Cell Aggregation by Computer Simulation
,”
J. Comput. Phys.
,
220
(
1
), pp.
139
154
.10.1016/j.jcp.2006.05.010
127.
Závodszky
,
G.
,
van Rooij
,
B.
,
Azizi
,
V.
, and
Hoekstra
,
A.
,
2017
, “
Cellular Level In-Silico Modeling of Blood Rheology With an Improved Material Model for Red Blood Cells
,”
Front. Physiol.
,
8
, p.
563
.10.3389/fphys.2017.00563
128.
Thon
,
J. N.
,
Macleod
,
H.
,
Begonja
,
A. J.
,
Zhu
,
J.
,
Lee
,
K.-C.
,
Mogilner
,
A.
,
Hartwig
,
J. H.
, and
Italiano
,
J. E.
,
2012
, “
Microtubule and Cortical Forces Determine Platelet Size During Vascular Platelet Production
,”
Nat. Commun.
,
3
(
1
), p.
852
.10.1038/ncomms1838
129.
van Dijk
,
J.
,
Bompard
,
G.
,
Cau
,
J.
,
Kunishima
,
S.
,
Rabeharivelo
,
G.
,
Mateos-Langerak
,
J.
,
Cazevieille
,
C.
, et al.,
2018
, “
Microtubule Polyglutamylation and Acetylation Drive Microtubule Dynamics Critical for Platelet Formation
,”
BMC Biol.
,
16
(
1
), p.
116
.10.1186/s12915-018-0584-6
130.
Moskalensky
,
A. E.
, and
Litvinenko
,
A. L.
,
2019
, “
The Platelet Shape Change: Biophysical Basis and Physiological Consequences
,”
Platelets
,
30
(
5
), pp.
543
548
.10.1080/09537104.2018.1514109
131.
Dmitrieff
,
S.
,
Alsina
,
A.
,
Mathur
,
A.
, and
Nédélec
,
F. J.
,
2017
, “
Balance of Microtubule Stiffness and Cortical Tension Determines the Size of Blood Cells With Marginal Band Across Species
,”
Proc. Natl. Acad. Sci.
,
114
(
17
), pp.
4418
4423
.10.1073/pnas.1618041114
132.
Sheriff
,
J.
, and
Bluestein
,
D.
,
2019
, “
Platelet Dynamics in Blood Flow
,”
Dynamics of Blood Cell Suspensions in Microflows
, CRC Press, Boca Raton, FL, pp.
215
256
.
You do not currently have access to this content.