Abstract

Discordant findings were frequently reported by studies dedicated to exploring the association of morphological/hemodynamic factors with the rupture of intracranial aneurysms (IAs), probably owing to insufficient control of confounding factors. In this study, we aimed to minimize the influences of confounding factors by focusing IAs of interest on mirror aneurysms and, meanwhile, modeling IAs together with the cerebral arterial network to improve the physiological fidelity of hemodynamic simulation. Fifty-two mirror aneurysms located at the middle cerebral artery (MCA) in 26 patients were retrospectively investigated. Numerical tests performed on two randomly selected patients demonstrated that over truncation of cerebral arteries proximal to the MCA during image-based model reconstruction led to uncertain changes in computed values of intra-aneurysmal hemodynamic parameters, which justified the minimal truncation strategy adopted in our study. Five morphological parameters (i.e., volume (V), height (H), dome area (DA), nonsphericity index (NSI), and size ratio (SR)) and two hemodynamic parameters (i.e., peak wall shear stress (WSS) (peakWSS), and pressure loss coefficient (PLc)) were found to differ significantly between the ruptured and unruptured aneurysms and proved by receiver operating characteristic (ROC) analysis to have potential value for differentiating the rupture status of aneurysm with the areas under curve (AUCs) ranging from 0.681 to 0.763. Integrating V, SR, peakWSS, and PLc or some of them into regression models considerably improved the classification of aneurysms, elevating AUC up to 0.864, which indicates that morphological and hemodynamic parameters have complementary roles in assessing the risk of aneurysm rupture.

References

1.
Etminan
,
N.
, and
Rinkel
,
G. J. E.
,
2015
, “
Cerebral Aneurysm Guidelines-More Guidance Needed
,”
Nat. Rev. Neurol.
,
11
(
9
), pp.
490
491
.10.1038/nrneurol.2015.146
2.
Morita
,
A.
,
Kirino
,
T.
,
Hashi
,
K.
,
Aoki
,
N.
,
Fukuhara
,
S.
,
Hashimoto
,
N.
,
Nakayama
,
T.
,
Sakai
,
M.
,
Teramoto
,
A.
,
Tominari
,
S.
,
Yoshimoto
,
T.
, and
Investigators
,
U. J.
,
2012
, “
The Natural Course of Unruptured Cerebral Aneurysms in a Japanese Cohort
,”
New Engl. J. Med.
,
366
(
26
), pp.
2474
2482
.10.1056/NEJMoa1113260
3.
Korja
,
M.
,
Lehto
,
H.
, and
Juvela
,
S.
,
2014
, “
Lifelong Rupture Risk of Intracranial Aneurysms Depends on Risk Factors
,”
Stroke
,
45
(
7
), pp.
1958
1963
.10.1161/STROKEAHA.114.005318
4.
Amenta
,
P. S.
,
Yadla
,
S.
,
Campbell
,
P. G.
,
Maltenfort
,
M. G.
,
Dey
,
S.
,
Ghosh
,
S.
,
Ali
,
M. S.
,
Jallo
,
J. I.
,
Tjoumakaris
,
S. I.
,
Gonzalez
,
L. F.
,
Dumont
,
A. S.
,
Rosenwasser
,
R. H.
, and
Jabbour
,
P. M.
,
2012
, “
Analysis of Nonmodifiable Risk Factors for Intracranial Aneurysm Rupture in a Large, Retrospective Cohort
,”
Neurosurgery
,
70
(
3
), pp.
693
701
.10.1227/NEU.0b013e3182354d68
5.
Naggara
,
O. N.
,
White
,
P. M.
,
Guilbert
,
F.
,
Roy
,
D.
,
Weill
,
A.
, and
Raymond
,
J.
,
2010
, “
Endovascular Treatment of Intracranial Unruptured Aneurysms: Systematic Review and Meta-Analysis of the Literature on Safety and Efficacy
,”
Radiology
,
256
(
3
), pp.
887
897
.10.1148/radiol.10091982
6.
Greving
,
J. P.
,
Wermer
,
M. J. H.
,
Brown
,
R. D.
,
Morita
,
A.
,
Juvela
,
S.
,
Yonekura
,
M.
,
Ishibashi
,
T.
,
Torner
,
J. C.
,
Nakayama
,
T.
,
Rinke
,
G. J. E.
, and
Algra
,
A.
,
2014
, “
Development of the PHASES Score for Prediction of Risk of Rupture of Intracranial Aneurysms: A Pooled Analysis of Six Prospective Cohort Studies
,”
Lancet Neurol.
,
13
(
1
), pp.
59
66
.10.1016/S1474-4422(13)70263-1
7.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C. M.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
Am. J. Neuroradiol.
,
32
(
2
), pp.
264
270
.10.3174/ajnr.A2274
8.
Murayama
,
Y.
,
Takao
,
H.
,
Ishibashi
,
T.
,
Saguchi
,
T.
,
Ebara
,
M.
,
Yuki
,
I.
,
Arakawa
,
H.
,
Irie
,
K.
,
Urashima
,
M.
, and
Molyneux
,
A. J.
,
2016
, “
Risk Analysis of Unruptured Intracranial Aneurysms
,”
Stroke
,
47
(
2
), pp.
365
371
.10.1161/STROKEAHA.115.010698
9.
Murayama
,
Y.
,
Fujimura
,
S.
,
Suzuki
,
T.
, and
Takao
,
H.
,
2019
, “
Computational Fluid Dynamics as a Risk Assessment Tool for Aneurysm Rupture
,”
Neurosurg. Focus
,
47
(
1
), p.
E12
.10.3171/2019.4.FOCUS19189
10.
Soldozy
,
S.
,
Norat
,
P.
,
Elsarrag
,
M.
,
Chatrath
,
A.
,
Costello
,
J. S.
,
Sokolowski
,
J. D.
,
Tvrdik
,
P.
,
Kalani
,
M. Y. S.
, and
Park
,
M. S.
,
2019
, “
The Biophysical Role of Hemodynamics in the Pathogenesis of Cerebral Aneurysm Formation and Rupture
,”
Neurosurg. Focus
,
47
(
1
), p.
E11
.10.3171/2019.4.FOCUS19232
11.
Detmer
,
F. J.
,
Lückehe
,
D.
,
Mut
,
F.
,
Slawski
,
M.
,
Hirsch
,
S.
,
Bijlenga
,
P.
,
Von Voigt
,
G.
, and
Cebral
,
J. R.
,
2020
, “
Comparison of Statistical Learning Approaches for Cerebral Aneurysm Rupture Assessment
,”
Int. J. Comput. Assist. Radiol. Surg.
,
15
(
1
), pp.
141
150
.10.1007/s11548-019-02065-2
12.
Liu
,
J.
,
Chen
,
Y.
,
Zhu
,
D.
,
Li
,
Q.
,
Chen
,
Z.
,
Zhou
,
J.
,
Lin
,
B.
,
Yang
,
Y.
, and
Jia
,
X.
,
2021
, “
A Nomogram to Predict Rupture Risk of Middle Cerebral Artery Aneurysm
,”
Neurol. Sci.
,
42
(
12
), pp.
5289
5296
.10.1007/s10072-021-05255-6
13.
Etminan
,
N.
,
Beseoglu
,
K.
,
Barrow
,
D. L.
,
Bederson
,
J.
,
Brown
,
R. D.
,
Connolly
,
E. S.
,
Derdeyn
,
C. P.
,
Hänggi
,
D.
,
Hasan
,
D.
,
Juvela
,
S.
,
Kasuya
,
H.
,
Kirkpatrick
,
P. J.
,
Knuckey
,
N.
,
Koivisto
,
T.
,
Lanzino
,
G.
,
Lawton
,
M. T.
,
Leroux
,
P.
,
McDougall
,
C. G.
,
Mee
,
E.
,
Mocco
,
J.
,
Molyneux
,
A.
,
Morgan
,
M. K.
,
Mori
,
K.
,
Morita
,
A.
,
Murayama
,
Y.
,
Nagahiro
,
S.
,
Pasqualin
,
A.
,
Raabe
,
A.
,
Raymond
,
J.
,
Rinkel
,
G. J. E.
,
Rüfenacht
,
D.
,
Seifert
,
V.
,
Spears
,
J.
,
Steiger
,
H.-J.
,
Steinmetz
,
H.
,
Torner
,
J. C.
,
Vajkoczy
,
P.
,
Wanke
,
I.
,
Wong
,
G. K. C.
,
Wong
,
J. H.
, and
Macdonald
,
R. L.
,
2014
, “
Multidisciplinary Consensus on Assessment of Unruptured Intracranial Aneurysms
,”
Stroke
,
45
(
5
), pp.
1523
1530
.10.1161/STROKEAHA.114.004519
14.
Skodvin
,
T. Ø.
,
Kloster
,
R.
,
Sorteberg
,
W.
, and
Isaksen
,
J. G.
,
2021
, “
Survey of European Neurosurgeons' Management of Unruptured Intracranial Aneurysms: Inconsistent Practice and Organization
,”
Acta Neurochir.
,
163
(
1
), pp.
113
121
.10.1007/s00701-020-04539-8
15.
Chien
,
A.
,
Sayre
,
J.
, and
Vinuela
,
F.
,
2011
, “
Comparative Morphological Analysis of the Geometry of Ruptured and Unruptured Aneurysms
,”
Neurosurgery
,
69
(
2
), pp.
349
356
.10.1227/NEU.0b013e31821661c3
16.
Etminan
,
N.
, and
Rinkel
,
G. J.
,
2016
, “
Unruptured Intracranial Aneurysms: Development, Rupture and Preventive Management
,”
Nat. Rev. Neurol.
,
12
(
12
), pp.
699
713
.10.1038/nrneurol.2016.150
17.
Brown
,
R. D.
,
Huston
,
J.
,
Hornung
,
R.
,
Foroud
,
T.
,
Kallmes
,
D. F.
,
Kleindorfer
,
D.
,
Meissner
,
I.
,
Woo
,
D.
,
Sauerbeck
,
L.
, and
Broderick
,
J.
,
2008
, “
Screening for Brain Aneurysm in the Familial Intracranial Aneurysm Study: Frequency and Predictors of Lesion Detection
,”
J. Neurosurg.
,
108
(
6
), pp.
1132
1138
.10.3171/JNS/2008/108/6/1132
18.
Juvela
,
S.
,
Poussa
,
K.
,
Lehto
,
H.
, and
Porras
,
M.
,
2013
, “
Natural History of Unruptured Intracranial Aneurysms
,”
Stroke
,
44
(
9
), pp.
2414
2421
.10.1161/STROKEAHA.113.001838
19.
Broderick
,
J. P.
,
Brown
,
R. D.
,
Sauerbeck
,
L.
,
Hornung
,
R.
,
Huston
,
J.
,
Woo
,
D.
,
Anderson
,
C.
,
Rouleau
,
G.
,
Kleindorfer
,
D.
,
Flaherty
,
M. L.
,
Meissner
,
I.
,
Foroud
,
T.
,
Charles
,
E.
,
Moomaw
,
J.
, and
Connolly
,
E. S.
,
2009
, “
Greater Rupture Risk for Familial as Compared to Sporadic Unruptured Intracranial Aneurysms
,”
Stroke
,
40
(
6
), pp.
1952
1957
.10.1161/STROKEAHA.108.542571
20.
Xu
,
L.
,
Wang
,
H.
,
Chen
,
Y.
,
Dai
,
Y.
,
Lin
,
B.
,
Liang
,
F.
,
Wan
,
J.
,
Yang
,
Y.
, and
Zhao
,
B.
,
2020
, “
Morphological and Hemodynamic Factors Associated With Ruptured Middle Cerebral Artery Mirror Aneurysms: A Retrospective Study
,”
World Neurosurg.
,
137
, pp.
e138
e143
.10.1016/j.wneu.2020.01.083
21.
Lu
,
G.
,
Huang
,
L.
,
Zhang
,
X. L.
,
Wang
,
S. Z.
,
Hong
,
Y.
,
Hu
,
Z.
, and
Geng
,
D. Y.
,
2011
, “
Influence of Hemodynamic Factors on Rupture of Intracranial Aneurysms: Patient-Specific 3D Mirror Aneurysms Model Computational Fluid Dynamics Simulation
,”
Am. J. Neuroradiol.
,
32
(
7
), pp.
1255
1261
.10.3174/ajnr.A2461
22.
Fan
,
J.
,
Wang
,
Y.
,
Liu
,
J.
,
Jing
,
L.
,
Wang
,
C.
,
Li
,
C.
,
Yang
,
X.
, and
Zhang
,
Y.
,
2015
, “
Morphological-Hemodynamic Characteristics of Intracranial Bifurcation Mirror Aneurysms
,”
World Neurosurg.
,
84
(
1
), pp.
114
120
.10.1016/j.wneu.2015.02.038
23.
Xu
,
J.
,
Yu
,
Y.
,
Wu
,
X.
,
Wu
,
Y.
,
Jiang
,
C.
,
Wang
,
S.
,
Huang
,
Q.
, and
Liu
,
J.
,
2013
, “
Morphological and Hemodynamic Analysis of Mirror Posterior Communicating Artery Aneurysms
,”
PLoS One
,
8
(
1
), p.
e55413
.10.1371/journal.pone.0055413
24.
Maslehaty
,
H.
,
Capone
,
C.
,
Frantsev
,
R.
,
Fischer
,
I.
,
Jabbarli
,
R.
,
Cornelius
,
J. F.
,
Kamp
,
M. A.
,
Cappabianca
,
P.
,
Sure
,
U.
,
Steiger
,
H.-J.
, and
Petridis
,
A. K.
,
2018
, “
Predictive Anatomical Factors for Rupture in Middle Cerebral Artery Mirror Bifurcation Aneurysms
,”
J. Neurosurg.
,
128
(
6
), pp.
1799
1807
.10.3171/2017.2.JNS162705
25.
Doddasomayajula
,
R.
,
Chung
,
B. J.
,
Mut
,
F.
,
Jimenez
,
C. M.
,
Hamzei-Sichani
,
F.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2017
, “
Hemodynamic Characteristics of Ruptured and Unruptured Multiple Aneurysms at Mirror and Ipsilateral Locations
,”
Am. J. Neuroradiol.
,
38
(
12
), pp.
2301
2307
.10.3174/ajnr.A5397
26.
Yuan
,
J.
,
Huang
,
C.
,
Lai
,
N.
,
Li
,
Z.
,
Jiang
,
X.
,
Wang
,
X.
,
Zhao
,
X.
,
Wu
,
D.
,
Liu
,
J.
,
Xia
,
D.
, and
Fang
,
X.
,
2020
, “
Hemodynamic and Morphological Analysis of Mirror Aneurysms Prior to Rupture
,”
Neuropsychiatr. Dis. Treat.
,
16
, pp.
1339
1347
.10.2147/NDT.S254124
27.
Xu
,
W.-D.
,
Wang
,
H.
,
Wu
,
Q.
,
Wen
,
L.-L.
,
You
,
Z.-Q.
,
Yuan
,
B.
,
Chen
,
S.-J.
,
Wang
,
H.-D.
, and
Zhang
,
X.
,
2020
, “
Morphology Parameters for Rupture in Middle Cerebral Artery Mirror Aneurysms
,”
J. NeuroInterven. Surg.
,
12
(
9
), pp.
858
861
.10.1136/neurintsurg-2019-015620
28.
Xiang
,
J.
,
Tutino
,
V. M.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.10.3174/ajnr.A3710
29.
Jansen
,
I. G. H.
,
Schneiders
,
J. J.
,
Potters
,
W. V.
,
Van Ooij
,
P.
,
Van Den Berg
,
R.
,
Van Bavel
,
E.
,
Marquering
,
H. A.
, and
Majoie
,
C. B. L. M.
,
2014
, “
Generalized Versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
35
(
8
), pp.
1543
1548
.10.3174/ajnr.A3901
30.
Najafi
,
M.
,
Cancelliere
,
N. M.
,
Brina
,
O.
,
Bouillot
,
P.
,
Vargas
,
M. I.
,
Delattre
,
B. M.
,
Pereira
,
V. M.
, and
Steinman
,
D. A.
,
2021
, “
How Patient-Specific Do Internal Carotid Artery Inflow Rates Need to Be for Computational Fluid Dynamics of Cerebral Aneurysms?
,”
J. Neurointervent. Surg.
,
13
(
5
), pp.
459
464
.10.1136/neurintsurg-2020-015993
31.
Rajabzadeh-Oghaz
,
H.
,
van Ooij
,
P.
,
Veeturi
,
S. S.
,
Tutino
,
V. M.
,
Zwanenburg
,
J. J.
, and
Meng
,
H.
,
2020
, “
Inter-Patient Variations in Flow Boundary Conditions at Middle Cerebral Artery From 7T PC-MRI and Influence on Computational Fluid Dynamics of Intracranial Aneurysms
,”
Comput. Biol. Med.
,
120
, p.
103759
.10.1016/j.compbiomed.2020.103759
32.
Liang
,
F. Y.
,
Liu
,
X. S.
,
Yamaguchi
,
R. H.
, and
Liu
,
H.
,
2016
, “
Sensitivity of Flow Patterns in Aneurysms on the Anterior Communicating Artery to Anatomic Variations of the Cerebral Arterial Network
,”
J. Biomech.
,
49
(
15
), pp.
3731
3740
.10.1016/j.jbiomech.2016.09.031
33.
Xu
,
L. J.
,
Liang
,
F. Y.
,
Zhao
,
B.
,
Wan
,
J. Q.
, and
Liu
,
H.
,
2018
, “
Influence of Aging-Induced Flow Waveform Variation on Hemodynamics in Aneurysms Present at the Internal Carotid Artery: A Computational Model-Based Study
,”
Comput. Biol. Med.
,
101
, pp.
51
60
.10.1016/j.compbiomed.2018.08.004
34.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2006
, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
27
(
8
), pp.
1703
1709
.https://www.semanticscholar.org/paper/Computational-fluid-dynamicsmodeling-of-aneurysms%3A-Castro-Putman/6b32b6438bfb43c3f829f7043943c085f4aeba74
35.
Valen-Sendstad
,
K.
,
Bergersen
,
A. W.
,
Shimogonya
,
Y.
,
Goubergrits
,
L.
,
Bruening
,
J.
,
Pallares
,
J.
,
Cito
,
S.
,
Piskin
,
S.
,
Pekkan
,
K.
,
Geers
,
A. J.
,
Larrabide
,
I.
,
Rapaka
,
S.
,
Mihalef
,
V.
,
Fu
,
W. Y.
,
Qiao
,
A. K.
,
Jain
,
K.
,
Roller
,
S.
,
Mardal
,
K. A.
,
Kamakoti
,
R.
,
Spirka
,
T.
,
Ashton
,
N.
,
Revell
,
A.
,
Aristokleous
,
N.
,
Houston
,
J. G.
,
Tsuji
,
M.
,
Ishida
,
F.
,
Menon
,
P. G.
,
Browne
,
L. D.
,
Broderick
,
S.
,
Shojima
,
M.
,
Koizumi
,
S.
,
Barbour
,
M.
,
Aliseda
,
A.
,
Morales
,
H. G.
,
Lefevre
,
T.
,
Hodis
,
S.
,
Al-Smadi
,
Y. M.
,
Tran
,
J. S.
,
Marsden
,
A. L.
,
Vaippummadhom
,
S.
,
Einstein
,
G. A.
,
Brown
,
A. G.
,
Debus
,
K.
,
Niizuma
,
K.
,
Rashad
,
S.
,
Sugiyama
,
S.
,
Khan
,
M. O.
,
Updegrove
,
A. R.
,
Shadden
,
S. C.
,
Cornelissen
,
B. M. W.
,
Majoie
,
C.
,
Berg
,
P.
,
Saalfield
,
S.
,
Kono
,
K.
, and
Steinman
,
D. A.
,
2018
, “
Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
544
564
.10.1007/s13239-018-00374-2
36.
Chen
,
J. L.
,
Ding
,
G. H.
,
Yang
,
X. J.
, and
Li
,
H. Y.
,
2011
, “
Effects of Parent Artery Segmentation and Aneurismal-Wall Elasticity on Patient-Specific Hemodynamic Simulations
,”
J. Hydrodyn.
,
23
(
5
), pp.
660
668
.10.1016/S1001-6058(10)60162-X
37.
Zhang
,
Z. Q.
,
Xu
,
L. J.
,
Liu
,
R.
,
Liu
,
X. S.
,
Zhao
,
B.
, and
Liang
,
F. Y.
,
2020
, “
Importance of Incorporating Systemic Cerebroarterial Hemodynamics Into Computational Modeling of Blood Flow in Intracranial Aneurysm
,”
J. Hydrodyn.
,
32
(
3
), pp.
510
522
.10.1007/s42241-019-0038-9
38.
Liang
,
F.
,
Takagi
,
S.
,
Himeno
,
R.
, and
Hao
,
L.
,
2009
, “
Multi-Scale Modeling of the Human Cardiovascular System With Applications to Aortic Valvular and Arterial Stenoses
,”
Med. Biol. Eng. Comput.
,
47
(
7
), pp.
743
755
.10.1007/s11517-009-0449-9
39.
Liang
,
F.
,
Fukasaku
,
K.
,
Liu
,
H.
, and
Takagi
,
S.
,
2011
, “
A Computational Model Study of the Influence of the Anatomy of the Circle of Willis on Cerebral Hyperperfusion Following Carotid Artery Surgery
,”
Biomed. Eng. Online
,
10
(
1
), p.
84
.10.1186/1475-925X-10-84
40.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work. I. the Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U. S. A.
,
12
(
3
), pp.
207
214
.10.1073/pnas.12.3.207
41.
Marzo
,
A.
,
Singh
,
P.
,
Larrabide
,
I.
,
Radaelli
,
A.
,
Coley
,
S.
,
Gwilliam
,
M.
,
Wilkinson
,
I. D.
,
Lawford
,
P.
,
Reymond
,
P.
,
Patel
,
U.
,
Frangi
,
A.
, and
Hose
,
D. R.
,
2011
, “
Computational Hemodynamics in Cerebral Aneurysms: The Effects of Modeled Versus Measured Boundary Conditions
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
884
896
.10.1007/s10439-010-0187-z
42.
Valencia
,
C.
,
Villauriol
,
M. C.
,
Pozo
,
J. M.
, and
Frangi
,
A. F.
,
2010
, “
Morphological Descriptors as Rupture Indicators in Middle Cerebral Artery Aneurysms
,”
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
6046
6049
.10.1109/IEMBS.2010.5627610
43.
Detmer
,
F. J.
,
Chung
,
B. J.
,
Jimenez
,
C.
,
Hamzei-Sichani
,
F.
,
Kallmes
,
D.
,
Putman
,
C.
, and
Cebral
,
J. R.
,
2019
, “
Associations of Hemodynamics, Morphology, and Patient Characteristics With Aneurysm Rupture Stratified by Aneurysm Location
,”
Neuroradiology
,
61
(
3
), pp.
275
284
.10.1007/s00234-018-2135-9
44.
Chien
,
A.
,
Xu
,
M.
,
Yokota
,
H.
,
Scalzo
,
F.
,
Morimoto
,
E.
, and
Salamon
,
N.
,
2018
, “
Nonsphericity Index and Size Ratio Identify Morphologic Differences Between Growing and Stable Aneurysms in a Longitudinal Study of 93 Cases
,”
Am. J. Neuroradiol.
,
39
(
3
), pp.
500
506
.10.3174/ajnr.A5531
45.
Miura
,
Y.
,
Ishida
,
F.
,
Umeda
,
Y.
,
Tanemura
,
H.
,
Suzuki
,
H.
,
Matsushima
,
S.
,
Shimosaka
,
S.
, and
Taki
,
W.
,
2013
, “
Low Wall Shear Stress is Independently Associated With the Rupture Status of Middle Cerebral Artery Aneurysms
,”
Stroke
,
44
(
2
), pp.
519
521
.10.1161/STROKEAHA.112.675306
46.
Takao
,
H.
,
Murayama
,
Y.
,
Otsuka
,
S.
,
Qian
,
Y.
,
Mohamed
,
A.
,
Masuda
,
S.
,
Yamamoto
,
M.
, and
Abe
,
T.
,
2012
, “
Hemodynamic Differences Between Unruptured and Ruptured Intracranial Aneurysms During Observation
,”
Stroke
,
43
(
5
), pp.
1436
1439
.10.1161/STROKEAHA.111.640995
47.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C.
,
2011
, “
Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
145
151
.10.3174/ajnr.A2419
48.
Kim
,
J. H.
,
Han
,
H.
,
Moon
,
Y.-J.
,
Suh
,
S.
,
Kwon
,
T.-H.
,
Kim
,
J. H.
,
Chong
,
K.
, and
Yoon
,
W.-K.
,
2020
, “
Hemodynamic Features of Microsurgically Identified, Thin-Walled Regions of Unruptured Middle Cerebral Artery Aneurysms Characterized Using Computational Fluid Dynamics
,”
Neurosurgery
,
86
(
6
), pp.
851
859
.10.1093/neuros/nyz311
49.
Lee
,
S.-W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.10.1115/1.3127252
50.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
51.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X.-M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
H1922
.10.1152/ajpheart.00897.2003
52.
Bowker
,
T. J.
,
Watton
,
P. N.
,
Summers
,
P. E.
,
Byrne
,
J. V.
, and
Ventikos
,
Y.
,
2010
, “
Rest Versus Exercise Hemodynamics for Middle Cerebral Artery Aneurysms: A Computational Study
,”
Am. J. Neuroradiol.
,
31
(
2
), pp.
317
323
.10.3174/ajnr.A1797
53.
Riccardello
,
G. J.
,
Shastri
,
D. N.
,
Changa
,
A. R.
,
Thomas
,
K. G.
,
Roman
,
M.
,
Prestigiacomo
,
C. J.
, and
Gandhi
,
C. D.
,
2018
, “
Influence of Relative Residence Time on Side-Wall Aneurysm Inception
,”
Neurosurgery
,
83
(
3
), pp.
574
581
.10.1093/neuros/nyx433
54.
Qian
,
Y.
,
Takao
,
H.
,
Umezu
,
M.
, and
Murayama
,
Y.
,
2011
, “
Risk Analysis of Unruptured Aneurysms Using Computational Fluid Dynamics Technology: Preliminary Results
,”
Am. J. Neuroradiol.
,
32
(
10
), pp.
1948
1955
.10.3174/ajnr.A2655
55.
Varble
,
N.
,
Trylesinski
,
G.
,
Xiang
,
J.
,
Snyder
,
K.
, and
Meng
,
H.
,
2017
, “
Identification of Vortex Structures in a Cohort of 204 Intracranial Aneurysms
,”
J. R. Soc. Interface
,
14
(
130
), p.
20170021
.10.1098/rsif.2017.0021
56.
Feliciani
,
G.
,
Potters
,
W. V.
,
Van Ooij
,
P.
,
Schneiders
,
J. J.
,
Nederveen
,
A. J.
,
Van Bavel
,
E.
,
Majoie
,
C. B.
, and
Marquering
,
H. A.
,
2015
, “
Multiscale 3-D + t Intracranial Aneurysmal Flow Vortex Detection
,”
IEEE Trans. Biomed. Eng.
,
62
(
5
), pp.
1355
1362
.10.1109/TBME.2014.2387874
57.
Chalouhi
,
N.
,
Ali
,
M. S.
,
Jabbour
,
P. M.
,
Tjoumakaris
,
S. I.
,
Gonzalez
,
L. F.
,
Rosenwasser
,
R. H.
,
Koch
,
W. J.
, and
Dumont
,
A. S.
,
2012
, “
Biology of Intracranial Aneurysms: Role of Inflammation
,”
J. Cerebral Blood Flow Metabol.
,
32
(
9
), pp.
1659
1676
.10.1038/jcbfm.2012.84
58.
Texakalidis
,
P.
,
Sweid
,
A.
,
Mouchtouris
,
N.
,
Peterson
,
E. C.
,
Sioka
,
C.
,
Rangel-Castilla
,
L.
,
Reavey-Cantwell
,
J.
, and
Jabbour
,
P.
,
2019
, “
Aneurysm Formation, Growth, and Rupture: The Biology and Physics of Cerebral Aneurysms
,”
World Neurosurg.
,
130
, pp.
277
284
.10.1016/j.wneu.2019.07.093
59.
Varga
,
A.
,
Di Leo
,
G.
,
Banga
,
P. V.
,
Csobay-Novák
,
C.
,
Kolossváry
,
M.
,
Maurovich-Horvat
,
P.
, and
Hüttl
,
K.
,
2019
, “
Multidetector CT Angiography of the Circle of Willis: Association of Its Variants With Carotid Artery Disease and Brain Ischemia
,”
Eur. Radiol.
,
29
(
1
), pp.
46
56
.10.1007/s00330-018-5577-x
60.
Alastruey
,
J.
,
Parker
,
K. H.
,
Peiro
,
J.
,
Byrd
,
S. M.
, and
Sherwin
,
S. J.
,
2007
, “
Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows
,”
J. Biomech.
,
40
(
8
), pp.
1794
1805
.10.1016/j.jbiomech.2006.07.008
61.
Mu
,
L.
,
He
,
Y.
,
Chen
,
J.
,
Wei
,
J.
,
Yu
,
X.
, and
Ji
,
C.
,
2015
, “
Study of Blood Flow Regulation in a Patient-Specific Model for the Circle of Willis With an Aneurysm by Computational and In-Vitro Simulation
,”
Chin. J. Hydrodynomics
,
30
(
6
), pp.
707
715
.10.16076/j.cnki.cjhd.2015.06.017
62.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
,
2006
, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
,
39
(
8
), pp.
1454
1463
.10.1016/j.jbiomech.2005.04.005
63.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Appanaboyina
,
S.
,
Putman
,
C. M.
,
Millan
,
D.
, and
Frangi
,
A. F.
,
2005
, “
Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
,
24
(
4
), pp.
457
467
.10.1109/TMI.2005.844159
64.
Hua
,
Y.
,
Oh
,
J. H.
, and
Kim
,
Y. B.
,
2015
, “
Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms
,”
Yonsei Med. J.
,
56
(
5
), pp.
1328
1337
.10.3349/ymj.2015.56.5.1328
65.
Huang
,
Z. Q.
,
Zhou
,
X. W.
,
Hou
,
Z. J.
,
Huang
,
S. Q.
,
Meng
,
Z. H.
,
Wang
,
X. L.
,
Yu
,
H.
,
Feng
,
L. J.
,
Wang
,
Q. J.
,
Li
,
P. A.
, and
Wen
,
Z. B.
,
2017
, “
Risk Factors Analysis of Mirror Aneurysms: A Multi-Center Retrospective Study Based on Clinical and Demographic Profile of Patients
,”
Eur. J. Radiol.
,
96
, pp.
80
84
.10.1016/j.ejrad.2017.09.015
66.
Zhang
,
Y.
,
Yang
,
X.
,
Wang
,
Y.
,
Liu
,
J.
,
Li
,
C.
,
Jing
,
L.
,
Wang
,
S.
, and
Li
,
H.
,
2014
, “
Influence of Morphology and Hemodynamic Factors on Rupture of Multiple Intracranial Aneurysms: Matched-Pairs of Ruptured-Unruptured Aneurysms Located Unilaterally on the Anterior Circulation
,”
BMC Neurol.
,
14
, p.
253
.10.1186/s12883-014-0253-5
67.
Liang
,
L.
,
Steinman
,
D. A.
,
Brina
,
O.
,
Chnafa
,
C.
,
Cancelliere
,
N. M.
, and
Pereira
,
V. M.
,
2019
, “
Towards the Clinical Utility of CFD for Assessment of Intracranial Aneurysm Rupture - A Systematic Review and Novel Parameter-Ranking Tool
,”
J. Neurointerventional Surg.
,
11
(
2
), pp.
153
158
.10.1136/neurintsurg-2018-014246
68.
Goubergrits
,
L.
,
Schaller
,
J.
,
Kertzscher
,
U.
,
van den Bruck
,
N.
,
Poethkow
,
K.
,
Petz
,
C.
,
Hege
,
H.-C.
, and
Spuler
,
A.
,
2012
, “
Statistical Wall Shear Stress Maps of Ruptured and Unruptured Middle Cerebral Artery Aneurysms
,”
J. R. Soc. Interface
,
9
(
69
), pp.
677
688
.10.1098/rsif.2011.0490
69.
Chien
,
A.
,
Castro
,
M. A.
,
Tateshima
,
S.
,
Sayre
,
J.
,
Cebral
,
J.
, and
Viñuela
,
F.
,
2009
, “
Quantitative Hemodynamic Analysis of Brain Aneurysms at Different Locations
,”
Am. J. Neuroradiol.
,
30
(
8
), pp.
1507
1512
.10.3174/ajnr.A1600
70.
Yi
,
J.
,
Zielinski
,
D.
, and
Chen
,
M.
,
2016
, “
Cerebral Aneurysm Size Before and After Rupture: Case Series and Literature Review
,”
J. Stroke Cerebrovasc. Dis.
,
25
(
5
), pp.
1244
1248
.10.1016/j.jstrokecerebrovasdis.2016.01.031
71.
Skodvin
,
T. Ø.
,
Johnsen
,
L.-H.
,
Gjertsen
,
Ø.
,
Isaksen
,
J. G.
, and
Sorteberg
,
A.
,
2017
, “
Cerebral Aneurysm Morphology Before and After Rupture
,”
Stroke
,
48
(
4
), pp.
880
886
.10.1161/STROKEAHA.116.015288
72.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2011
, “
Influencing Factors in Image-Based Fluid-Structure Interaction Computation of Cerebral Aneurysms
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
324
340
.10.1002/fld.2448
73.
Bazilevs
,
Y.
,
Hsu
,
M. C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
X.
,
Kvamsdal
,
T.
,
Brekken
,
R.
, and
Isaksen
,
J. G.
,
2010
, “
A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,”
Comput. Mech.
,
46
(
1
), pp.
3
16
.10.1007/s00466-009-0421-4
You do not currently have access to this content.