Abstract

Competent elastic fibers are critical to the function of the lung and right circulation. Murine models of elastopathies can aid in understanding the functional roles of the elastin and elastin-associated glycoproteins that constitute elastic fibers. Here, we quantify together lung and pulmonary arterial structure, function, and mechanics with right heart function in a mouse model deficient in the elastin-associated glycoprotein fibulin-5. Differences emerged as a function of genotype, sex, and arterial region. Specifically, functional studies revealed increased lung compliance in fibulin-5 deficiency consistent with a histologically observed increased alveolar disruption. Biaxial mechanical tests revealed that the primary branch pulmonary arteries exhibit decreased elastic energy storage capacity and wall stress despite only modest differences in circumferential and axial material stiffness in the fibulin-5 deficient mice. Histological quantifications confirm a lower elastic fiber content in the fibulin-5 deficient pulmonary arteries, with fragmented elastic laminae in the outer part of the wall - likely the reason for reduced energy storage. Ultrasound measurements confirm sex differences in compromised right ventricular function in the fibulin-5 deficient mice. These results reveal compromised right heart function, but opposite effects of elastic fiber dysfunction on the lung parenchyma (significantly increased compliance) and pulmonary arteries (trend toward decreased distensibility), and call for further probing of ventilation-perfusion relationships in pulmonary pathologies. Amongst many other models, fibulin-5 deficient mice can contribute to our understanding of the complex roles of elastin in pulmonary health and disease.

References

1.
Kelly
,
V. J.
,
Hibbert
,
K. A.
,
Kohli
,
P.
,
Kone
,
M.
,
Greenblatt
,
E. E.
,
Venegas
,
J. G.
,
Winkler
,
T.
, and
Harris
,
R. S.
,
2017
, “
Hypoxic Pulmonary Vasoconstriction Does Not Explain All Regional Perfusion Redistribution in Asthma
,”
Am. J. Respir. Crit. Care Med.
,
196
(
7
), pp.
834
844
.10.1164/rccm.201612-2438OC
2.
Mecham
,
R. P.
,
2018
, “
Elastin in Lung Development and Disease Pathogenesis
,”
Matrix Biol.
,
73
, pp.
6
20
.10.1016/j.matbio.2018.01.005
3.
Urban
,
Z.
,
Gao
,
J.
,
Pope
,
F. M.
, and
Davis
,
E. C.
,
2005
, “
Autosomal Dominant Cutis Laxa With Severe Lung Disease: Synthesis and Matrix Deposition of Mutant Tropoelastin
,”
J. Invest. Dermatol.
,
124
(
6
), pp.
1193
1199
.10.1111/j.0022-202X.2005.23758.x
4.
Taylor
,
S.
,
Dirir
,
O.
,
Zamanian
,
R. T.
,
Rabinovitch
,
M.
, and
Thompson
,
A.
,
2018
, “
The Role of Neutrophils and Neutrophil Elastase in Pulmonary Arterial Hypertension
,”
Front. Med.
,
5
, p.
217
.10.3389/fmed.2018.00217
5.
Humbert
,
M.
,
Guignabert
,
C.
,
Bonnet
,
S.
,
Dorfmüller
,
P.
,
Klinger
,
J. R.
,
Nicolls
,
M. R.
,
Olschewski
,
A. J.
,
Pullamsetti
,
S. S.
,
Schermuly
,
R. T.
,
Stenmark
,
K. R.
, and
Rabinovitch
,
M.
,
2019
, “
Pathology and Pathobiology of Pulmonary Hypertension: State of the Art and Research Perspectives
,”
Eur. Respir. J.
,
53
(
1
), p.
1801887
.10.1183/13993003.01887-2018
6.
Humbert
,
M.
,
Morrell
,
N. W.
,
Archer
,
S. L.
,
Stenmark
,
K. R.
,
MacLean
,
M. R.
,
Lang
,
I. M.
,
Christman
,
B. W.
,
Weir
,
E. K.
,
Eickelberg
,
O.
,
Voelkel
,
N. F.
, and
Rabinovitch
,
M.
,
2004
, “
Cellular and Molecular Pathobiology of Pulmonary Arterial Hypertension
,”
J. Am. Coll. Cardiol.
,
43
(
12
), pp.
S13
S24
.10.1016/j.jacc.2004.02.029
7.
Stenmark
,
K. R.
, and
McMurtry
,
I. F.
,
2005
, “
Vascular Remodeling Versus Vasoconstriction in Chronic Hypoxic Pulmonary Hypertension: A Time for Reappraisal?
,”
Am. Heart Assoc.
, 97(2), pp.
95
98
.10.1161/01.RES.00000175934.68087.29
8.
Tojais
,
N. F.
,
Cao
,
A.
,
Lai
,
Y.-J.
,
Wang
,
L.
,
Chen
,
P.-I.
,
Alcazar
,
M. A. A.
,
de Jesus Perez
,
V. A.
,
Hopper
,
R. K.
,
Rhodes
,
C. J.
,
Bill
,
M. A.
,
Sakai
,
L. Y.
, and
Rabinovitch
,
M.
,
2017
, “
Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor-β in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension
,”
Arterioscler. Thromb. Vasc. Biol.
,
37
(
8
), pp.
1559
1569
.10.1161/ATVBAHA.117.309696
9.
Stenmark
,
K. R.
,
Meyrick
,
B.
,
Galie
,
N.
,
Mooi
,
W. J.
, and
McMurtry
,
I. F.
,
2009
, “
Animal Models of Pulmonary Arterial Hypertension: The Hope for Etiological Discovery and Pharmacological Cure
,”
Am. J. Physiol.-Lung Cellular Mol. Physiol.
,
297
(
6
), pp.
L1013
L1032
.10.1152/ajplung.00217.2009
10.
Yanagisawa
,
H.
, and
Wagenseil
,
J.
,
2020
, “
Elastic Fibers and Biomechanics of the Aorta: Insights From Mouse Studies
,”
Matrix Biol.
,
85–86
, pp.
160
172
.10.1016/j.matbio.2019.03.001
11.
Nakamura
,
T.
,
Lozano
,
P. R.
,
Ikeda
,
Y.
,
Iwanaga
,
Y.
,
Hinek
,
A.
,
Minamisawa
,
S.
,
Cheng
,
C.-F.
,
Kobuke
,
K.
,
Dalton
,
N.
,
Takada
,
Y.
,
Tashiro
,
K.
,
Ross Jr
,
J.
,
Honjo
,
T.
, and
Chien
,
K. R.
,
2002
, “
Fibulin-5/DANCE is Essential for Elastogenesis In Vivo
,”
Nature
,
415
(
6868
), pp.
171
175
.10.1038/415171a
12.
Yanagisawa
,
H.
,
Davis
,
E. C.
,
Starcher
,
B. C.
,
Ouchi
,
T.
,
Yanagisawa
,
M.
,
Richardson
,
J. A.
, and
Olson
,
E. N.
,
2002
, “
Fibulin-5 is an Elastin-Binding Protein Essential for Elastic Fibre Development In Vivo
,”
Nature
,
415
(
6868
), pp.
168
171
.10.1038/415168a
13.
Brandsma
,
C.-A.
,
van den Berge
,
M.
,
Postma
,
D. S.
,
Jonker
,
M. R.
,
Brouwer
,
S.
,
Paré
,
P. D.
,
Sin
,
D. D.
,
Bossé
,
Y.
,
Laviolette
,
M.
,
Karjalainen
,
J.
,
Fehrmann
,
R. S. N.
,
Nickle
,
D. C.
,
Hao
,
K.
,
Spanjer
,
A. I. R.
,
Timens
,
W.
, and
Franke
,
L.
,
2015
, “
A Large Lung Gene Expression Study Identifying Fibulin-5 as a Novel Player in Tissue Repair in COPD
,”
Thorax
,
70
(
1
), pp.
21
32
.10.1136/thoraxjnl-2014-205091
14.
Shifren
,
A.
,
Durmowicz
,
A. G.
,
Knutsen
,
R. H.
,
Faury
,
G.
, and
Mecham
,
R. P.
,
2008
, “
Elastin Insufficiency Predisposes to Elevated Pulmonary Circulatory Pressures Through Changes in Elastic Artery Structure
,”
J. Appl. Physiol.
,
105
(
5
), pp.
1610
1619
.10.1152/japplphysiol.90563.2008
15.
Shifren
,
A.
,
Durmowicz
,
A. G.
,
Knutsen
,
R. H.
,
Hirano
,
E.
, and
Mecham
,
R. P.
,
2007
, “
Elastin Protein Levels Are a Vital Modifier Affecting Normal Lung Development and Susceptibility to Emphysema
,”
Am. J. Physiol.-Lung Cellular Mol. Physiol.
,
292
(
3
), pp.
L778
L787
.10.1152/ajplung.00352.2006
16.
Remy-Jardin
,
M.
, and
Remy
,
J.
,
2008
, “
Vascular Disease in Chronic Obstructive Pulmonary Disease
,”
Proc. Am. Thorac. Soc.
,
5
(
9
), pp.
891
899
.10.1513/pats.200804-036QC
17.
Ramachandra
,
A. B.
, and
Humphrey
,
J. D.
,
2019
, “
Biomechanical Characterization of Murine Pulmonary Arteries
,”
J. Biomech.
,
84
, pp.
18
26
.10.1016/j.jbiomech.2018.12.012
18.
Ferruzzi
,
J.
,
Bersi
,
M.
, and
Humphrey
,
J.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.10.1007/s10439-013-0799-1
19.
Ferruzzi
,
J.
,
Bersi
,
M.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J.
,
2015
, “
Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p. 031007.10.1115/1.4029431
20.
Bersi
,
M. R.
,
Bellini
,
C.
,
Wu
,
J.
,
Montaniel
,
K. R.
,
Harrison
,
D. G.
, and
Humphrey
,
J. D.
,
2016
, “
Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension
,”
Hypertens.
,
67
(
5
), pp.
890
896
.10.1161/HYPERTENSIONAHA.115.06262
21.
Ferruzzi
,
J.
,
Madziva
,
D.
,
Caulk
,
A.
,
Tellides
,
G.
, and
Humphrey
,
J.
,
2018
, “
Compromised Mechanical Homeostasis in Arterial Aging and Associated Cardiovascular Consequences
,”
Biomech. Model. Mechanobiol.
,
17
(
5
), pp.
1281
1295
.10.1007/s10237-018-1026-7
22.
Ferruzzi
,
J.
,
Di Achille
,
P.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2018
, “
Combining In Vivo and In Vitro Biomechanical Data Reveals Key Roles of Perivascular Tethering in Central Artery Function
,”
PloS One
,
13
(
9
), p.
e0201379
.10.1371/journal.pone.0201379
23.
Murtada
,
S.-I.
,
Kawamura
,
Y.
,
Caulk
,
A. W.
,
Ahmadzadeh
,
H.
,
Mikush
,
N.
,
Zimmerman
,
K.
,
Kavanagh
,
D.
,
Weiss
,
D.
,
Latorre
,
M.
,
Zhuang
,
Z. W.
,
Shadel
,
G. S.
,
Braddock
,
D. T.
, and
Humphrey
,
J. D.
,
2020
, “
Paradoxical Aortic Stiffening and Subsequent Cardiac Dysfunction in Hutchinson–Gilford Progeria Syndrome
,”
J. R. Soc. Interface
,
17
(
166
), p.
20200066
.10.1098/rsif.2020.0066
24.
Pursell
,
E. R.
,
Vélez-Rendón
,
D.
, and
Valdez-Jasso
,
D.
,
2016
, “
Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension
,”
ASME J. Biomech. Eng.
,
138
(
11
), p. 111004.10.1115/1.4034826
25.
Martinez
,
F. J.
,
Curtis
,
J. L.
,
Sciurba
,
F.
,
Mumford
,
J.
,
Giardino
,
N. D.
,
Weinmann
,
G.
,
Kazerooni
,
E.
,
Murray
,
S.
,
2007
, “
Sex Differences in Severe Pulmonary Emphysema
,”
Am. J. Respir. Critical Care Med.
,
176
(
3
), pp.
243
252
.10.1164/rccm.200606-828OC
26.
Hester
,
J.
,
Ventetuolo
,
C.
, and
Lahm
,
T.
,
2011
, “
Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure
,”
Comprehensive Physiol.
,
10
(
1
), pp.
125
170
.10.1002/cphy.c190011
27.
Nouws
,
J.
,
Wan
,
F.
,
Finnemore
,
E.
,
Roque
,
W.
,
Kim
,
S.-J.
,
Bazan
,
I.
,
Li
,
C.-X.
,
2021
, “
MicroRNA miR-24-3p Reduces DNA Damage Responses, Apoptosis, and Susceptibility to Chronic Obstructive Pulmonary Disease
,”
JCI Insight
,
6
(
2
), p. e134218.10.1172/jci.insight.134218
28.
Kim
,
S. ‐J.
,
Shan
,
P.
,
Hwangbo
,
C.
,
Zhang
,
Y.
,
Min
,
J. ‐N.
,
Zhang
,
X.
,
Ardito
,
T.
,
Li
,
A.
,
Peng
,
T.
,
Sauler
,
M.
, and
Lee
,
P. J.
,
2019
, “
Endothelial Toll‐Like Receptor 4 Maintains Lung Integrity Via Epigenetic Suppression of p16INK4a
,”
Aging Cell
,
18
(
3
), p.
e12914
.10.1111/acel.12914
29.
Lindsey
,
M. L.
,
Kassiri
,
Z.
,
Virag
,
J. A.
,
de Castro Brás
,
L. E.
, and
Scherrer-Crosbie
,
M.
,
2018
, “
Guidelines for Measuring Cardiac Physiology in Mice
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
314
(
4
), pp.
H733
H752
.10.1152/ajpheart.00339.2017
30.
Kohut
,
A.
,
Patel
,
N.
, and
Singh
,
H.
,
2016
, “
Comprehensive Echocardiographic Assessment of the Right Ventricle in Murine Models
,”
J. Cardiovas. Ultrasound
,
24
(
3
), pp.
229
238
.10.4250/jcu.2016.24.3.229
31.
Humphrey
,
J. D.
,
2013
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer Science & Business Media
, Berlin.https://link.springer.com/book/10.1007/978-0-387-21576-1
32.
Bersi
,
M.
,
Khosravi
,
R.
,
Wujciak
,
A.
,
Harrison
,
D.
, and
Humphrey
,
J.
,
2017
, “
Differential Cell-Matrix Mechanoadaptations and Inflammation Drive Regional Propensities to Aortic Fibrosis, Aneurysm or Dissection in Hypertension
,”
J. R. Soc. Interface
,
14
(
136
), p.
20170327
.10.1098/rsif.2017.0327
33.
Crowley
,
G.
,
Kwon
,
S.
,
Caraher
,
E. J.
,
Haider
,
S. H.
,
Lam
,
R.
,
Batra
,
P.
,
Melles
,
D.
,
Liu
,
M.
, and
Nolan
,
A.
,
2019
, “
Quantitative Lung Morphology: Semi-Automated Measurement of Mean Linear Intercept
,”
BMC Pulm. Med.
,
19
(
1
), p.
206
.10.1186/s12890-019-0915-6
34.
Le
,
V. P.
,
Cheng
,
J. K.
,
Kim
,
J.
,
Staiculescu
,
M. C.
,
Ficker
,
S. W.
,
Sheth
,
S. C.
,
Bhayani
,
S. A.
,
Mecham
,
R. P.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J. E.
,
2015
, “
Mechanical Factors Direct Mouse Aortic Remodelling During Early Maturation
,”
J. R. Soc. Interface
,
12
(
104
), p.
20141350
.10.1098/rsif.2014.1350
35.
Le
,
V. P.
,
Stoka
,
K. V.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J. E.
,
2014
, “
Fibulin‐5 Null Mice With Decreased Arterial Compliance Maintain Normal Systolic Left Ventricular Function, but Not Diastolic Function During Maturation
,”
Physiol. Reports
,
2
(
3
), p.
e00257
.10.1002/phy2.257
36.
Murtada
,
S.-I.
,
Ferruzzi
,
J.
,
Yanagisawa
,
H.
, and
Humphrey
,
J.
,
2016
, “
Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice
,”
ASME J. Biomech. Eng.
,
138
(
5
), p. 051008.10.1115/1.4032938
37.
Jiao
,
Y.
,
Li
,
G.
,
Korneva
,
A.
,
Caulk
,
A. W.
,
Qin
,
L.
,
Bersi
,
M. R.
,
Li
,
Q.
,
Li
,
W.
,
Mecham
,
R. P.
,
Humphrey
,
J. D.
, and
Tellides
,
G.
,
2017
, “
Deficient Circumferential Growth is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency
,”
Aeterioscler, Thrombo., Vasc. Biol.
,
37
(
5
), pp.
930
941
.10.1161/ATVBAHA.117.309079
38.
Kozel
,
B. A.
,
Knutsen
,
R. H.
,
Ye
,
L.
,
Ciliberto
,
C. H.
,
Broekelmann
,
T. J.
, and
Mecham
,
R. P.
,
2011
, “
Genetic Modifiers of Cardiovascular Phenotype Caused by Elastin Haploinsufficiency Act by Extrinsic Noncomplementation
,”
J. Biol. Chem.
,
286
(
52
), pp.
44926
44936
.10.1074/jbc.M111.274779
39.
Faury
,
G.
,
Pezet
,
M.
,
Knutsen
,
R. H.
,
Boyle
,
W. A.
,
Heximer
,
S. P.
,
McLean
,
S. E.
,
Minkes
,
R. K.
,
Blumer
,
K. J.
,
Kovacs
,
A.
,
Kelly
,
D. P.
,
Li
,
D. Y.
,
Starcher
,
B.
, and
Mecham
,
R. P.
,
2003
, “
Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency
,”
J. Clin. Investig.
,
112
(
9
), pp.
1419
1428
.10.1172/JCI19028
40.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2012
, “
Role of Collagen Content and Cross-Linking in Large Pulmonary Arterial Stiffening After Chronic Hypoxia
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
279
289
.10.1007/s10237-011-0309-z
41.
Merklinger
,
S. L.
,
Wagner
,
R. A.
,
Spiekerkoetter
,
E.
,
Hinek
,
A.
,
Knutsen
,
R. H.
,
Kabir
,
M. G.
,
Desai
,
K.
,
Hacker
,
S.
,
Wang
,
L.
,
Cann
,
G. M.
,
Ambartsumian
,
N. S.
,
Lukanidin
,
E.
,
Bernstein
,
D.
,
Husain
,
M.
,
Mecham
,
R. P.
,
Starcher
,
B.
,
Yanagisawa
,
H.
, and
Rabinovitch
,
M.
,
2005
, “
Increased Fibulin-5 and Elastin in S100A4/Mts1 Mice With Pulmonary Hypertension
,”
Circulation Res.
,
97
(
6
), pp.
596
604
.10.1161/01.RES.0000182425.49768.8a
42.
Mutlu-Albayrak
,
H.
,
Emiralioğlu
,
N.
, and
Damar
,
Ç.
,
2020
, “
Overview of the Pulmonary Manifestations in Patients With Autosomal Recessive Cutis Laxa Type IC
,”
Pediatric Allergy, Immunol., Pulmonol.
,
33
(
4
), pp.
207
212
.10.1089/ped.2020.1156
43.
García-Valero
,
J.
,
Olloquequi
,
J.
,
Rodríguez
,
E.
,
Martín-Satué
,
M.
,
Texidó
,
L.
, and
Ferrer
,
J.
,
2021
, “
Decreased Expression of EC-SOD and Fibulin-5 in Alveolar Walls of Lungs From COPD Patients
,”
Archivos de Bronconeumología
.10.1016/j.arbres.2020.12.032
44.
Humphrey
,
J.
,
Eberth
,
J.
,
Dye
,
W.
, and
Gleason
,
R.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.10.1016/j.jbiomech.2008.11.011
45.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.10.1093/cvr/cvr195
46.
Urbán
,
Z.
,
Riazi
,
S.
,
Seidl
,
T. L.
,
Katahira
,
J.
,
Smoot
,
L. B.
,
Chitayat
,
D.
,
Boyd
,
C. D.
, and
Hinek
,
A.
,
2002
, “
Connection Between Elastin Haploinsufficiency and Increased Cell Proliferation in Patients With Supravalvular Aortic Stenosis and Williams-Beuren Syndrome
,”
Am. J. Human Genet.
,
71
(
1
), pp.
30
44
.10.1086/341035
47.
Gomez-Arroyo
,
J.
,
Saleem
,
S. J.
,
Mizuno
,
S.
,
Syed
,
A. A.
,
Bogaard
,
H. J.
,
Abbate
,
A.
,
Taraseviciene-Stewart
,
L.
,
Sung
,
Y.
,
Kraskauskas
,
D.
,
Farkas
,
D.
,
Conrad
,
D. H.
,
Nicolls
,
M. R.
, and
Voelkel
,
N. F.
,
2012
, “
A Brief Overview of Mouse Models of Pulmonary Arterial Hypertension: Problems and Prospects
,”
Am. J. Physiol.-Lung Cellular Mol. Physiol.
,
302
(
10
), pp.
L977
L991
.10.1152/ajplung.00362.2011
48.
Cavinato
,
C.
,
Murtada
,
S.-I.
,
Rojas
,
A.
, and
Humphrey
,
J. D.
,
2021
, “
Evolving Structure-Function Relations During Aortic Maturation and Aging Revealed by Multiphoton Microscopy
,”
Mech. Ageing Develop.
,
196
, p.
111471
.10.1016/j.mad.2021.111471
49.
Thibault
,
H. L. N. B.
,
Kurtz
,
B.
,
Raher
,
M. J.
,
Shaik
,
R. S.
,
Waxman
,
A.
,
Derumeaux
,
G. V.
,
Halpern
,
E. F.
,
Bloch
,
K. D.
, and
Scherrer-Crosbie
,
M.
,
2010
, “
Noninvasive Assessment of Murine Pulmonary Arterial Pressure: Validation and Application to Models of Pulmonary Hypertension
,”
Circ. Cardiovasc. Imaging
,
3
(
2
), pp.
157
163
.10.1161/CIRCIMAGING.109.887109
50.
Sanz
,
J.
,
Prat-Gonzalez
,
S.
,
Macaluso
,
F.
,
Fuster
,
V.
, and
Garcia
,
M.
,
2008
, “
155 Quantification of Pulse Wave Velocity in the Pulmonary Artery in Patients With Pulmonary Hypertension
,”
J. Cardiovasc. Magn. Resonance
,
10
(
S1
), p.
A56
.10.1186/1532-429X-10-S1-A56
51.
Vivodtzev
,
I.
,
Minet
,
C.
,
Tamisier
,
R.
,
Arbib
,
F.
,
Borel
,
J.-C.
,
Baguet
,
J.-P.
,
Lévy
,
P.
, and
Pépin
,
J.-L.
,
2013
, “
Arterial Stiffness by Pulse Wave Velocity in COPD: Reliability and Reproducibility
,”
Eur. Respir. J.
,
42
(
4
), pp.
1140
1142
.10.1183/09031936.00014813
52.
Weir-McCall
,
J. R.
,
Liu-Shiu-Cheong
,
P. S.
,
Struthers
,
A. D.
,
Lipworth
,
B. J.
, and
Houston
,
J. G.
,
2018
, “
Pulmonary Arterial Stiffening in COPD and Its Implications for Right Ventricular Remodelling
,”
Eur. Radiol.
,
28
(
8
), pp.
3464
3472
.10.1007/s00330-018-5346-x
53.
Prins
,
K. W.
,
Weir
,
E. K.
,
Archer
,
S. L.
,
Markowitz
,
J.
,
Rose
,
L.
,
Pritzker
,
M.
,
Madlon-Kay
,
R.
, and
Thenappan
,
T.
,
2016
, “
Pulmonary Pulse Wave Transit Time is Associated With Right Ventricular-Pulmonary Artery Coupling in Pulmonary Arterial Hypertension
,”
Pulm. Circ.
,
6
(
4
), pp.
576
585
.10.1086/688879
54.
Shadwick
,
R. E.
,
1999
, “
Mechanical Design in Arteries
,”
J. Exp. Biol.
,
202
(
23
), pp.
3305
3313
.10.1242/jeb.202.23.3305
55.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.10.1152/physrev.00041.2008
56.
Bellini
,
C.
,
Bersi
,
M.
,
Caulk
,
A.
,
Ferruzzi
,
J.
,
Milewicz
,
D.
,
Ramirez
,
F.
,
Rifkin
,
D.
,
Tellides
,
G.
,
Yanagisawa
,
H.
, and
Humphrey
,
J.
,
2017
, “
Comparison of 10 Murine Models Reveals a Distinct Biomechanical Phenotype in Thoracic Aortic Aneurysms
,”
J. R. Soc. Interface
,
14
(
130
), p.
20161036
.10.1098/rsif.2016.1036
57.
Harkness
,
L. M.
,
Kanabar
,
V.
,
Sharma
,
H. S.
,
Westergren-Thorsson
,
G.
, and
Larsson-Callerfelt
,
A.-K.
,
2014
, “
Pulmonary Vascular Changes in Asthma and COPD
,”
Pulm. Pharmacol. Ther.
,
29
(
2
), pp.
144
155
.10.1016/j.pupt.2014.09.003
58.
Ertan
,
C.
,
Tarakci
,
N.
,
Ozeke
,
O.
, and
Demir
,
A. D.
,
2013
, “
Pulmonary Artery Distensibility in Chronic Obstructive Pulmonary Disease
,”
Echocardiography
,
30
(
8
), pp.
940
944
.10.1111/echo.12170
59.
Rahaghi
,
F. N.
,
van Beek
,
E. J. R.
, and
Washko
,
G. R.
,
2014
, “
Cardiopulmonary Coupling in Chronic Obstructive Pulmonary Disease: The Role of Imaging
,”
J. Thorac. Imaging
,
29
(
2
), pp.
80
91
.10.1097/RTI.0000000000000076
60.
Sakao
,
S.
,
Voelkel
,
N. F.
, and
Tatsumi
,
K.
,
2014
, “
The Vascular Bed in COPD: Pulmonary Hypertension and Pulmonary Vascular Alterations
,”
Eur. Respiratory Rev.
,
23
(
133
), pp.
350
355
.10.1183/09059180.00007913
61.
Voelkel
,
N. F.
, and
Cool
,
C. D.
,
2003
, “
Pulmonary Vascular Involvement in Chronic Obstructive Pulmonary Disease
,”
Eur. Respir. J.
,
22
(
Suppl 46
), pp.
28 s
32 s
.10.1183/09031936.03.00000503
62.
Bellofiore
,
A.
, and
Chesler
,
N. C.
,
2013
, “
Methods for Measuring Right Ventricular Function and Hemodynamic Coupling With the Pulmonary Vasculature
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1384
1398
.10.1007/s10439-013-0752-3
63.
Fourie
,
P. R.
,
Coetzee
,
A. R.
, and
Bolliger
,
C. T.
,
1992
, “
Pulmonary Artery Compliance: Its Role in Right Ventricular-Arterial Coupling
,”
Cardiovasc. Res.
,
26
(
9
), pp.
839
844
.10.1093/cvr/26.9.839
64.
Manning
,
E. P.
,
Ramachandra
,
A. B.
,
Schupp
,
J. C.
,
Cavinato
,
C.
,
Raredon
,
M. S. B.
,
Bärnthaler
,
T.
,
Cosme
,
C.
,
Singh
,
I.
,
Tellides
,
G.
,
Kaminski
,
N.
, and
Humphrey
,
J. D.
,
2021
, “
Mechanisms of Hypoxia-Induced Pulmonary Arterial Stiffening in Mice Revealed by a Functional Genetics Assay of Structural, Functional, and Transcriptomic Data
,”
Front. Physiol.
,
1
, epub.10.3389/fphys.2021.726253
65.
Liu
,
A.
,
Schreier
,
D.
,
Tian
,
L.
,
Eickhoff
,
J. C.
,
Wang
,
Z.
,
Hacker
,
T. A.
, and
Chesler
,
N. C.
,
2014
, “
Direct and Indirect Protection of Right Ventricular Function by Estrogen in an Experimental Model of Pulmonary Arterial Hypertension
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
307
(
3
), pp.
H273
H283
.10.1152/ajpheart.00758.2013
66.
Frump
,
A. L.
,
Albrecht
,
M.
,
Yakubov
,
B.
,
Breuils-Bonnet
,
S.
,
Nadeau
,
V.
,
Tremblay
,
E.
,
Potus
,
F.
,
Omura
,
J.
,
Cook
,
T.
,
Fisher
,
A.
,
Rodriguez
,
B.
,
Brown
,
R. D.
,
Stenmark
,
K. R.
,
Rubinstein
,
C. D.
,
Krentz
,
K.
,
Tabima
,
D. M.
,
Li
,
R.
,
Sun
,
X.
,
Chesler
,
N. C.
,
Provencher
,
S.
,
Bonnet
,
S.
, and
Lahm
,
T.
,
2021
, “
17β-Estradiol and Estrogen Receptor α Protect Right Ventricular Function in Pulmonary Hypertension Via BMPR2 and Apelin
,”
J. Clinic. Investig.
,
131
(
6
), p. e129433.10.1172/JCI129433
67.
Cuomo
,
F.
,
Ferruzzi
,
J.
,
Agarwal
,
P.
,
Li
,
C.
,
Zhuang
,
Z. W.
,
Humphrey
,
J. D.
, and
Figueroa
,
C. A.
,
2019
, “
Sex-Dependent Differences in Central Artery Haemodynamics in Normal and Fibulin-5 Deficient Mice: Implications for Ageing
,”
Proc. R. Soc. A
,
475
(
2221
), p.
20180076
.10.1098/rspa.2018.0076
68.
Yang
,
W.
,
Dong
,
M.
,
Rabinovitch
,
M.
,
Chan
,
F. P.
,
Marsden
,
A. L.
, and
Feinstein
,
J. A.
,
2019
, “
Evolution of Hemodynamic Forces in the Pulmonary Tree With Progressively Worsening Pulmonary Arterial Hypertension in Pediatric Patients
,”
Biomech. Model. Mechanobiol.
,
18
(
3
), pp.
779
796
.10.1007/s10237-018-01114-0
69.
Qureshi
,
M. U.
,
Colebank
,
M. J.
,
Paun
,
L. M.
,
Fix
,
L. E.
,
Chesler
,
N.
,
Haider
,
M. A.
,
Hill
,
N. A.
,
Husmeier
,
D.
, and
Olufsen
,
M. S.
,
2019
, “
Hemodynamic Assessment of Pulmonary Hypertension in Mice: A Model-Based Analysis of the Disease Mechanism
,”
Biomech. Model. Mechanobiol.
,
18
(
1
), pp.
219
243
.10.1007/s10237-018-1078-8
70.
Hasler
,
D.
,
Anagnostopoulou
,
P.
,
Nyilas
,
S.
,
Latzin
,
P.
,
Schittny
,
J.
, and
Obrist
,
D.
,
2019
, “
A Multi-Scale Model of Gas Transport in the Lung to Study Heterogeneous Lung Ventilation During the Multiple-Breath Washout Test
,”
PLoS Comput. Biol.
,
15
(
6
), p.
e1007079
.10.1371/journal.pcbi.1007079
71.
Marquis
,
A. D.
,
Jezek
,
F.
,
Pinsky
,
D. J.
, and
Beard
,
D. A.
,
2021
, “
Hypoxic Pulmonary Vasoconstriction as a Regulator of Alveolar-Capillary Oxygen Flux: A Computational Model of Ventilation-Perfusion Matching
,”
PLOS Comput. Biol.
,
17
(
5
), p.
e1008861
.10.1371/journal.pcbi.1008861
You do not currently have access to this content.