Abstract

In this paper, a multibody model was developed in the framework of biotribology of lower limb artificial joints. The presented algorithm performs the inverse dynamics of musculoskeletal systems with the aim to achieve a tool for the calculation of the joint reaction forces. The revolute joint, the cam joint, the spherical joint and the free joint were considered in the analyzed lower limb system by introducing a novel analytical formulation of the rheonomic constraint equations based on the quaternions theory. Within the kinematical analysis, the curved muscle paths were modeled by simulating their geodesic wrapping over bony surfaces while the muscle actuations were formulated through the Hill muscle model. The developed theoretical model was developed in matlab environment allowing to follow the classical musculoskeletal analysis pipeline: kinematical analysis, inverse dynamics, and static optimization, applied to the lower limb during the gait kinematics. The validation of the results was obtained by comparing the calculated hip joint reactions with the ones obtained in vivo by Bergmann and calculated by Opensim software, showing a satisfactory agreement. The proposed model and algorithm represent a fully open and controllable synovial joint tribological configuration generator tool, useful to be coupled with numerical lubrication/contact models in the framework of the in silico artificial joints tribological optimization.

References

1.
Marian
,
M.
,
Orgeldinger
,
C.
,
Rothammer
,
B.
,
Nečas
,
D.
,
Vrbka
,
M.
,
Křupka
,
I.
,
Hartl
,
M.
,
Wimmer
,
M. A.
,
Tremmel
,
S.
, and
Wartzack
,
S.
,
2021
, “
Towards the Understanding of Lubrication Mechanisms in Total Knee Replacements –Part II: Numerical Modeling
,”
Tribol. Int.
,
156
, p.
106809
.10.1016/j.triboint.2020.106809
2.
Popov
,
V. L.
,
Poliakov
,
A. M.
, and
Pakhaliuk
,
V. I.
,
2021
, “
Synovial Joints. Tribology, Regeneration, Regenerative Rehabilitation and Arthroplasty
,”
Lubricants
,
9
(
2
), p.
15
.10.3390/lubricants9020015
3.
Lu
,
X.
,
Meng
,
Q.
,
Wang
,
J.
, and
Jin
,
Z.
,
2018
, “
Transient Viscoelastic Lubrication Analyses of UHMWPE Hip Replacements
,”
Tribol. Int.
,
128
, pp.
271
278
.10.1016/j.triboint.2018.07.037
4.
Ruggiero
,
A.
, and
Sicilia
,
A.
,
2020
, “
Lubrication Modeling and Wear Calculation in Artificial Hip Joint During the Gait
,”
Tribol. Int.
,
142
, p.
105993
.10.1016/j.triboint.2019.105993
5.
Ruggiero
,
A.
, and
Sicilia
,
A.
,
2020
, “
A Mixed Elasto-Hydrodynamic Lubrication Model for Wear Calculation in Artificial Hip Joints
,”
Lubricants
,
8
(
7
), p.
72
.10.3390/lubricants8070072
6.
Ruggiero
,
A.
,
Sicilia
,
A.
, and
Affatato
,
S.
,
2020
, “
In Silico Total Hip Replacement Wear Testing in the Framework of ISO 14242-3 Accounting for Mixed Elasto-Hydrodynamic Lubrication Effects
,”
Wear
,
460
, p.
203420
.10.1016/j.wear.2020.203420
7.
Ruggiero
,
A.
,
2020
, “
Milestones in Natural Lubrication of Synovial Joints
,”
Front. Mech. Eng.
,
6
, p.
52
.10.3389/fmech.2020.00052
8.
Ruggiero
,
A.
,
Gomez
,
E.
, and
D'Amato
,
R.
,
2011
, “
Approximate Analytical Model for the Squeeze-Film Lubrication of the Human Ankle Joint With Synovial Fluid Filtrated by Articular Cartilage
,”
Tribol. Lett.
,
41
(
2
), pp.
337
343
.10.1007/s11249-010-9710-5
9.
Ruggiero
,
A.
,
Gómez
,
E.
, and
D′Amato
,
R.
,
2013
, “
Approximate Closed-Form Solution of the Synovial Fluid Film Force in the Human Ankle Joint With Non-Newtonian Lubricant
,”
Tribol. Int.
,
57
, pp.
156
161
.10.1016/j.triboint.2012.06.024
10.
Weinhandl
,
J. T.
, and
Bennett
,
H. J.
,
2019
, “
Musculoskeletal Model Choice Influences Hip Joint Load Estimations During Gait
,”
J. Biomech.
,
91
, pp.
124
132
.10.1016/j.jbiomech.2019.05.015
11.
van Veen
,
B.
,
Montefiori
,
E.
,
Modenese
,
L.
,
Mazzà
,
C.
, and
Viceconti
,
M.
,
2019
, “
Muscle Recruitment Strategies Can Reduce Joint Loading During Level Walking
,”
J. Biomech.
,
97
, p.
109368
.10.1016/j.jbiomech.2019.109368
12.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
,
DeMers
,
M. S.
,
Rajagopal
,
A.
,
Millard
,
M.
,
Hamner
,
S. R.
,
Arnold
,
E. M.
,
Yong
,
J. R.
,
Lakshmikanth
,
S. K.
,
Sherman
,
M. A.
,
Ku
,
J. P.
, and
Delp
,
S. L.
,
2018
, “
OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput. Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
13.
Quental
,
C.
,
Folgado
,
J.
, and
Ambròsio
,
J.
,
2016
, “
A Window Moving Inverse Dynamics Optimization for Biomechanics of Motion
,”
Multibody Syst. Dyn.
,
38
(
2
), pp.
157
171
.10.1007/s11044-016-9529-4
14.
Ojeda
,
J.
,
Martìnez-Reina
,
J.
, and
Mayo
,
J.
,
2016
, “
The Effect of Kinematic Constraints in the Inverse Dynamics Problem in Biomechanics
,”
Multibody Syst. Dyn.
,
37
(
3
), pp.
291
309
.10.1007/s11044-016-9508-9
15.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Study of the Friction-Induced Vibration and Contact Mechanics of Artificial Hip Joints
,”
Tribol. Int.
,
70
, pp.
1
10
.10.1016/j.triboint.2013.09.006
16.
Flores
,
P.
,
Ambròsio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.10.1023/B:MUBO.0000042901.74498.3a
17.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.10.1016/j.compstruc.2009.03.006
18.
Quental
,
C.
,
Azevedo
,
M.
,
Ambròsio
,
J.
,
Gonçalves
,
S.
, and
Folgado
,
J.
,
2018
, “
Influence of the Musculotendon Dynamics on the Muscle Force-Sharing Problem of the Shoulder—A Fully Inverse Dynamics Approach
,”
ASME J. Biomech. Eng.
,
140
(
7
), p. 071005.10.1115/1.4039675
19.
Ruggiero
,
A.
, and
Sicilia
,
A.
,
2020
, “
A Novel Explicit Analytical Multibody Approach for the Analysis of Upper Limb Dynamics and Joint Reactions Calculation Considering Muscle Wrapping
,”
Appl. Sci.
,
10
(
21
), p.
7760
.10.3390/app10217760
20.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
21.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.10.1016/0021-9290(89)90179-6
22.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.10.1080/10255849908907988
23.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
24.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
25.
Bergmann
,
G.
,
Bender
,
A.
,
Dymke
,
J.
,
Duda
,
G.
, and
Damm
,
P.
,
2016
, “
Standardized Loads Acting in Hip Implants
,”
PLoS One
,
11
(
5
), p.
e0155612
.10.1371/journal.pone.0155612
26.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
27.
Stavness, I., Sherman
,
M.
, and
Delp
,
S.
,
2012
, “
A General Approach to Muscle Wrapping Over Multiple Surfaces
,”
America Society for Biomechanics Conference
, Gainesville, FL, Aug.
15
18
.https://www.cs.usask.ca/faculty/stavness/papers/stavness2012-a-general-approach-to-musclewrapping.pdf
28.
Scholz
,
A.
,
Stavness
,
I.
,
Sherman
,
M.
,
Delp
,
S.
, and
Kecskeméthy
,
A.
,
2014
, “
Improved Muscle Wrapping Algorithms Using Explicit Path-Error Jacobians
,”
Computational Kinematics
,
Springer
, Dordrecht, The Netherlands, pp.
395
403
.
29.
Chand
,
T. J.
,
2011
,
Complete Description of the Thelen 2003 Muscle Model
,
OpenSim
,
Stanford, CA
.
30.
Jovanovic
,
K.
,
Vranic
,
J.
, and
Miljkovic
,
N.
,
2015
, “
Hill's and Huxley's Muscle Models: Tools for Simulations in Biomechanics
,”
Serbian J. Elect. Eng.
,
12
(
1
), pp.
53
67
.10.2298/SJEE1501053J
31.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p. 021005.10.1115/1.4023390
32.
Romero
,
F.
, and
Alonso
,
F.
,
2016
, “
A Comparison Among Different Hill-Type Contraction Dynamics Formulations for Muscle Force Estimation
,”
Mech. Sci.
,
7
(
1
), pp.
19
29
.10.5194/ms-7-19-2016
33.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
34.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.10.1115/1.1531112
You do not currently have access to this content.