Abstract

The Ross procedure using the inclusion technique with anticommissural plication (ACP) is associated with excellent valve hemodynamics and favorable leaflet kinematics. The objective was to evaluate individual pulmonary cusp's biomechanics and fluttering by including coronary flow in the Ross procedure using an ex vivo three-dimensional-printed heart simulator. Ten porcine and five human pulmonary autografts were harvested from a meat abattoir and heart transplant patients. Five porcine autografts without reinforcement served as controls. The other autografts were prepared using the inclusion technique with and without ACP (ACP and NACP). Hemodynamic and high-speed videography data were measured using the ex vivo heart simulator. Although porcine autografts showed similar leaflet rapid opening and closing mean velocities, human ACP compared to NACP autografts demonstrated lower leaflet rapid opening mean velocity in the right (p = 0.02) and left coronary cusps (p = 0.003). The porcine and human autograft leaflet rapid opening and closing mean velocities were similar in all three cusps. Porcine autografts showed similar leaflet flutter frequencies in the left (p = 0.3) and noncoronary cusps (p = 0.4), but porcine NACP autografts versus controls demonstrated higher leaflet flutter frequency in the right coronary cusp (p = 0.05). The human NACP versus ACP autografts showed higher flutter frequency in the noncoronary cusp (p = 0.02). The leaflet flutter amplitudes were similar in all three cusps in both porcine and human autografts. The ACP compared to NACP autografts in the Ross procedure was associated with more favorable leaflet kinematics. These results may translate to the improved long-term durability of the pulmonary autografts.

References

1.
Takkenberg
,
J. J. M.
,
Klieverik
,
L. M. A.
,
Schoof
,
P. H.
,
van Suylen
,
R. J.
,
van Herwerden
,
L. A.
,
Zondervan
,
P. E.
,
Roos-Hesselink
,
J. W.
,
Eijkemans
,
M. J.
,
Yacoub
,
M. H.
, and
Bogers
,
A. J.
,
2009
, “
The Ross Procedure: A Systematic Review and Meta-Analysis
,”
Circulation
,
119
(
2
), pp.
222
228
.10.1161/CIRCULATIONAHA.107.726349
2.
David
,
T. E.
,
David
,
C.
,
Woo
,
A.
, and
Manlhiot
,
C.
,
2014
, “
The Ross Procedure: Outcomes at 20 Years
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
1
), pp.
85
94
.10.1016/j.jtcvs.2013.08.007
3.
Elkins
,
R. C.
,
Thompson
,
D. M.
,
Lane
,
M. M.
,
Elkins
,
C. C.
, and
Peyton
,
M. D.
,
2008
, “
Ross Operation: 16-Year Experience
,”
J. Thorac. Cardiovasc. Surg.
,
136
(
3
), pp.
623
630
.10.1016/j.jtcvs.2008.02.080
4.
David
,
T. E.
,
Omran
,
A.
,
Ivanov
,
J.
,
Armstrong
,
S.
,
de Sa
,
M. P.
,
Sonnenberg
,
B.
, and
Webb
,
G.
,
2000
, “
Dilation of the Pulmonary Autograft After the Ross Procedure
,”
J. Thorac. Cardiovasc. Surg.
,
119
(
2
), pp.
210
220
.10.1016/S0022-5223(00)70175-9
5.
de Kerchove
,
L.
,
Rubay
,
J.
,
Pasquet
,
A.
,
Poncelet
,
A.
,
Ovaert
,
C.
,
Pirotte
,
M.
,
Buche
,
M.
,
D'Hoore
,
W.
,
Noirhomme
,
P.
, and
El Khoury
,
G.
,
2009
, “
Ross Operation in the Adult: Long-Term Outcomes After Root Replacement and Inclusion Techniques
,”
Ann. Thorac. Surg.
,
87
(
1
), pp.
95
102
.10.1016/j.athoracsur.2008.09.031
6.
Kouchoukos
,
N. T.
,
Masetti
,
P.
,
Nickerson
,
N. J.
,
Castner
,
C. F.
,
Shannon
,
W. D.
, and
Dávila-Román
,
V. G.
,
2004
, “
The Ross Procedure: Long-Term Clinical and Echocardiographic Follow-Up
,”
Ann. Thorac. Surg.
,
78
(
3
), pp.
773
781
.10.1016/j.athoracsur.2004.02.033
7.
Elkins
,
R. C.
,
Lane
,
M. M.
, and
Mccue
,
C.
,
1996
, “
Pulmonary Autograft Reoperation: Incidence and Management
,”
Ann. Thorac. Surg.
,
62
(
2
), pp.
450
455
.10.1016/0003-4975(96)00278-0
8.
Zhu
,
Y.
,
Marin-Cuartas
,
M.
,
Park
,
M. H.
,
Imbrie-Moore
,
A. M.
,
Wilkerson
,
R. J.
,
Madira
,
S.
,
Mullis
,
D. M.
, and
Woo
,
Y. J.
,
2021
, “
Ex Vivo Biomechanical Analysis of the Ross Procedure Using the Modified Inclusion Technique in a 3-Dimensionally Printed Left Heart Simulator
,”
J. Thorac. Cardiovasc. Surg.
,
S0022-5223
(
21
), p.
01315
.10.1016/j.jtcvs.2021.06.070
9.
Paulsen
,
M. J.
,
Imbrie-Moore
,
A. M.
,
Baiocchi
,
M.
,
Wang
,
H.
,
Hironaka
,
C. E.
,
Lucian
,
H. J.
,
Farry
,
J. M.
,
Thakore
,
A. D.
,
Zhu
,
Y.
,
Ma
,
M.
,
MacArthur
,
J. W.
Jr
,., and
Woo
,
Y. J.
,
2020
, “
Comprehensive Ex Vivo Comparison of 5 Clinically Used Conduit Configurations for Valve-Sparing Aortic Root Replacement Using a 3-Dimensional–Printed Heart Simulator
,”
Circulation
,
142
(
14
), pp.
1361
1373
.10.1161/CIRCULATIONAHA.120.046612
10.
Gleason
,
T. G.
,
2005
, “
New Graft Formulation and Modification of the David Reimplantation Technique
,”
J. Thorac. Cardiovasc. Surg.
,
130
(
2
), pp.
601
603
.10.1016/j.jtcvs.2005.02.016
11.
Flemister
,
D. C.
,
Hatoum
,
H.
,
Guhan
,
V.
,
Zebhi
,
B.
,
Lincoln
,
J.
,
Crestanello
,
J.
, and
Dasi
,
L. P.
,
2020
, “
Effect of Left and Right Coronary Flow Waveforms on Aortic Sinus Hemodynamics and Leaflet Shear Stress: Correlation With Calcification Locations
,”
Ann. Biomed. Eng.
,
48
(
12
), pp.
2796
2808
.10.1007/s10439-020-02677-9
12.
Moore
,
B. L.
, and
Dasi
,
L. P.
,
2015
, “
Coronary Flow Impacts Aortic Leaflet Mechanics and Aortic Sinus Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2231
2241
.10.1007/s10439-015-1260-4
13.
Lee
,
J. H.
,
Scotten
,
L. N.
,
Hunt
,
R.
,
Caranasos
,
T. G.
,
Vavalle
,
J. P.
, and
Griffith
,
B. E.
,
2021
, “
Bioprosthetic Aortic Valve Diameter and Thickness Are Directly Related to Leaflet Fluttering: Results From a Combined Experimental and Computational Modeling Study
,”
JTCVS Open
,
6
, pp.
60
81
.10.1016/j.xjon.2020.09.002
14.
Avelar
,
AHdF.
,
Canestri
,
J. A.
,
Bim
,
C.
,
Silva
,
M. G. M.
,
Huebner
,
R.
, and
Pinotti
,
M.
,
2017
, “
Quantification and Analysis of Leaflet Flutter on Biological Prosthetic Cardiac Valves
,”
Artif Organs
,
41
(
9
), pp.
835
844
.10.1111/aor.12856
15.
Pinto
,
E. R.
,
Damani
,
P. M.
, and
Sternberg
,
C. N.
,
1978
, “
Fine Flutterings of the Aortic Valve as Demonstrated by Aortic Valve Echocardiograms
,”
Am. Heart J.
,
95
(
6
), pp.
807
808
.10.1016/0002-8703(78)90513-6
16.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
,
2004
, “
Collagen Fibers Reduce Stresses and Stabilize Motion of Aortic Valve Leaflets During Systole
,”
J. Biomech.
,
37
(
3
), pp.
303
311
.10.1016/S0021-9290(03)00293-8
17.
Peacock
,
J. A.
,
1990
, “
An In Vitro Study of the Onset of Turbulence in the Sinus of Valsalva
,”
Circ. Res.
,
67
(
2
), pp.
448
460
.10.1161/01.RES.67.2.448
18.
Païdoussis
,
M. P.
,
2016
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, 2nd ed., Elsevier, Montreal, QC, Canada.
19.
Becsek
,
B.
,
Pietrasanta
,
L.
, and
Obrist
,
D.
,
2020
, “
Turbulent Systolic Flow Downstream of a Bioprosthetic Aortic Valve: Velocity Spectra, Wall Shear Stresses, and Turbulent Dissipation Rates
,”
Front. Physiol.
,
11
, p.
577188
.10.3389/fphys.2020.577188
20.
Ross
,
D. N.
,
1967
, “
Replacement of Aortic and Mitral Valves With a Pulmonary Autograft
,”
Lancet
,
290
(
7523
), pp.
956
958
.10.1016/S0140-6736(67)90794-5
21.
Imbrie-Moore
,
A. M.
,
Zhu
,
Y.
,
Park
,
M. H.
,
Paulsen
,
M. J.
,
Wang
,
H.
, and
Woo
,
Y. J.
,
2021
, “
Artificial Papillary Muscle Device for Off-Pump Transapical Mitral Valve Repair
,”
J. Thorac. Cardiovasc. Surg.
, epub.10.1016/j.jtcvs.2020.11.105
22.
Zhu
,
Y.
,
Imbrie-Moore
,
A. M.
,
Park
,
M. H.
,
Paulsen
,
M. J.
,
Wang
,
H.
,
MacArthur
,
J. W.
, and
Woo
,
Y. J.
,
2020
, “
Ex Vivo Analysis of a Porcine Bicuspid Aortic Valve and Aneurysm Disease Model
,”
Ann. Thorac. Surg.
, 111(2), pp.
e113
e115
.10.1016/j.athoracsur.2020.05.086
23.
Zhu
,
Y.
,
Imbrie-Moore
,
A. M.
,
Paulsen
,
M. J.
,
Priromprintr
,
B.
,
Park
,
M. H.
,
Wang
,
H.
,
Lucian
,
H. J.
,
Farry
,
J. M.
, and
Woo
,
Y. J.
,
2020
, “
A Novel Aortic Regurgitation Model From Cusp Prolapse With Hemodynamic Validation Using an Ex Vivo Left Heart Simulator
,”
J. Cardiovasc. Transl. Res.
, 14(2), pp.
283
289
.10.1007/s12265-020-10038-z
24.
Zhu
,
Y.
,
Imbrie-Moore
,
A. M.
,
Paulsen
,
M. J.
,
Priromprintr
,
B.
,
Wang
,
H.
,
Lucian
,
H. J.
,
Farry
,
J. M.
, and
Woo
,
Y. J.
,
2020
, “
Novel Bicuspid Aortic Valve Model With Aortic Regurgitation for Hemodynamic Status Analysis Using an Ex Vivo Simulator
,”
J. Thorac. Cardiovasc. Surg.
, 163(2), pp.
e161
e171
.10.1016/j.jtcvs.2020.06.028
25.
ViVitro Labs Inc., 2014, “Pulse Duplicator System User Manual,” Vivitro Labs Inc., Victoria, BC, Canada, accessed May 20, 2022, https://vivitrolabs.com/wp-content/uploads/2014/03/Pulse-Duplicator-Manual.pdf
26.
Harris
,
P.
, and
Kuppurao
,
L.
,
2016
, “
Quantitative Doppler Echocardiography
,”
BJA Educ.
,
16
(
2
), pp.
46
52
.10.1093/bjaceaccp/mkv015
27.
Leyh
,
R. G.
,
Schmidtke
,
C.
,
Sievers
,
H. H.
, and
Yacoub
,
M. H.
,
1999
, “
Opening and Closing Characteristics of the Aortic Valve After Different Types of Valve-Preserving Surgery
,”
Circulation
,
100
(
21
), pp.
2153
2160
.10.1161/01.CIR.100.21.2153
28.
De Paulis
,
R.
,
De Matteis
,
G. M.
,
Nardi
,
P.
,
Scaffa
,
R.
,
Buratta
,
M. M.
, and
Chiariello
,
L.
,
2001
, “
Opening and Closing Characteristics of the Aortic Valve After Valve-Sparing Procedures Using a New Aortic Root Conduit
,”
Ann. Thorac. Surg.
,
72
(
2
), pp.
487
494
.10.1016/S0003-4975(01)02747-3
29.
Schmidtke
,
C.
,
Sievers
,
H. H.
,
Frydrychowicz
,
A.
,
Petersen
,
M.
,
Scharfschwerdt
,
M.
,
Karluss
,
A.
,
Stierle
,
U.
, and
Richardt
,
D.
,
2013
, “
First Clinical Results With the New Sinus Prosthesis Used for Valve-Sparing Aortic Root Replacement
,”
Eur. J. Cardio-Thorac. Surg.
,
43
(
3
), pp.
585
590
.10.1093/ejcts/ezs318
30.
Gharib
,
M.
,
Kremers
,
D.
,
Koochesfahani
,
M.
, and
Kemp
,
M.
,
2002
, “
Fluids MK-E, Leonardo's Vision of Flow Visualization
,”
Springer
,
33
(
1
), pp.
219
223
.10.1007/s00348-002-0478-8
31.
Nobari
,
S.
,
Mongrain
,
R.
,
Gaillard
,
E.
,
Leask
,
R.
, and
Cartier
,
R.
,
2012
, “
Therapeutic Vascular Compliance Change May Cause Significant Variation in Coronary Perfusion: A Numerical Study
,”
Comput. Math. Methods Med.
,
2012
, pp.
1
10
.10.1155/2012/791686
32.
Asokan
,
S. K.
,
Fraser
,
R. C.
,
Kolbeck
,
R. C.
, and
Frank
,
M. J.
,
1975
, “
Variations in Right and Left Coronary Blood Flow in Man With and Without Occlusive Coronary Disease
,”
Br. Heart. J.
,
37
(
6
), pp.
604
661
.10.1136/hrt.37.6.604
33.
David
,
T. E.
,
Woo
,
A.
,
Armstrong
,
S.
, and
Maganti
,
M.
,
2010
, “
When Is the Ross Operation a Good Option to Treat Aortic Valve Disease?
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
1
), pp.
68
73
.10.1016/j.jtcvs.2009.09.053
34.
Johnson
,
E. L.
,
Wu
,
M. C. H.
,
Xu
,
F.
,
Wiese
,
N. M.
,
Rajanna
,
M. R.
,
Herrema
,
A. J.
,
Ganapathysubramanian
,
B.
,
Hughes
,
T. J. R.
,
Sacks
,
M. S.
, and
Hsu
,
M. C.
,
2020
, “
Thinner Biological Tissues Induce Leaflet Flutter in Aortic Heart Valve Replacements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
32
), pp.
19007
19016
.10.1073/pnas.2002821117
35.
Vennemann
,
B.
,
Rösgen
,
T.
,
Heinisch
,
P. P.
, and
Obrist
,
D.
,
2018
, “
Leaflet Kinematics of Mechanical and Bioprosthetic Aortic Valve Prostheses
,”
ASAIO J.
,
64
(
5
), pp.
651
661
.10.1097/MAT.0000000000000687
36.
Stradins
,
P.
,
2004
, “
Comparison of Biomechanical and Structural Properties Between Human Aortic and Pulmonary Valve
,”
Eur. J. Cardio-Thorac. Surg.
,
26
(
3
), pp.
634
639
.10.1016/j.ejcts.2004.05.043
37.
Christie
,
G. W.
, and
Barratt-Boyes
,
B. G.
,
1995
, “
Mechanical Properties of Porcine Pulmonary Valve Leaflets: How Do They Differ From Aortic Leaflets?
,”
Ann. Thorac. Surg.
,
60
, pp.
S195
S199
.10.1016/0003-4975(95)00279-T
38.
Wang
,
C.
,
Lachat
,
M.
,
Regar
,
E.
,
von Segesser
,
L. K.
,
Maisano
,
F.
, and
Ferrari
,
E.
,
2018
, “
Suitability of the Porcine Aortic Model for Transcatheter Aortic Root Repair
,”
Interact. Cardiovasc. Thorac. Surg.
,
26
(
6
), pp.
1002
1008
.10.1093/icvts/ivx381
39.
Gaudino
,
M.
,
Piatti
,
F.
,
Lau
,
C.
,
Sturla
,
F.
,
Weinsaft
,
J. W.
,
Weltert
,
L.
,
Votta
,
E.
,
Galea
,
N.
,
Chirichilli
,
I.
,
Di Franco
,
A.
,
Francone
,
M.
,
Catalano
,
C.
,
Redaelli
,
A.
,
Girardi
,
L. N.
, and
De Paulis
,
R.
,
2019
, “
Aortic Flow After Valve Sparing Root Replacement With or Without Neosinuses Reconstruction
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
2
), pp.
455
465
.10.1016/j.jtcvs.2018.06.094
40.
Lee
,
J. H.
,
Rygg
,
A. D.
,
Kolahdouz
,
E. M.
,
Rossi
,
S.
,
Retta
,
S. M.
,
Duraiswamy
,
N.
,
Scotten
,
L. N.
,
Craven
,
B. A.
, and
Griffith
,
B. E.
,
2020
, “
Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator
,”
Ann. Biomed. Eng.
,
48
(
5
), pp.
1475
1490
.10.1007/s10439-020-02466-4
You do not currently have access to this content.