Abstract

We propose a relatively simple two-dimensional mathematical model for maladaptive inward remodeling of resistive arteries in hypertension in terms of vascular solid mechanics. The main premises are: (i) maladaptive inward remodeling manifests as a reduced increase in the arterial mass compared to the case of adaptive remodeling under equivalent hypertensive pressures and (ii) the pressure-induced circumferential stress in the arterial wall is restored to its basal target value as happens in the case of adaptive remodeling. The rationale for these assumptions is the experimental findings that elevated tone in association with sustained hypertensive pressure down-regulate the normal differentiation of vascular smooth muscle cells from contractile to synthetic phenotype and the data for the calculated hoop stress before and after completion of remodeling. Results from illustrative simulations show that as the hypertensive pressure increases, remodeling causes a nonmonotonic variation of arterial mass, a decrease in inner arterial diameter, and an increase in wall thickness. These findings and the model prediction that inward eutrophic remodeling is preceded by inward hypertrophic remodeling are supported by published observations. Limitations and perspectives for refining the mathematical model are discussed.

References

1.
Folkow
,
B.
,
1960
, “
Role of the Nervous System in the Control of Vascular Tone
,”
Circulation
,
21
(
5
), pp.
760
768
.10.1161/01.CIR.21.5.760
2.
Touyz
,
R. M.
,
Alves-Lopes
,
R.
,
Rios
,
F. J.
,
Camargo
,
L. L.
,
Anagnostopoulou
,
A.
,
Arner
,
A.
, and
Montezano
,
A. C.
,
2018
, “
Vascular Smooth Muscle Contraction in Hypertension
,”
Cardiovasc. Res.
,
114
(
4
), pp.
529
539
.10.1093/cvr/cvy023
3.
Bayliss
,
W. M.
,
1902
, “
On the Local Reactions of the Arterial Wall to Changes of Internal Pressure
,”
J Physiol.
,
28
(
3
), pp.
220
231
.10.1113/jphysiol.1902.sp000911
4.
Ignarro
,
L.
,
2002
, “
Nitric Oxide as a Unique Signaling Molecule in the Vascular System: A Historical Review
,”
J. Physiol. Pharmacol.
,
53
(
4 Pt 1
), pp.
503
514
.https://pubmed.ncbi.nlm.nih.gov/12512688/
5.
Rachev
,
A.
,
2003
, “
Remodeling of Arteries in Response to Changes in Their Mechanical Environment
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
,
G. A.
Holzapfel
, and
R. W.
Ogden
, eds.,
Springer-Verlag
,
Wien, Austria
, pp.
221
271
.
6.
Mulvany
,
M. J.
,
1999
, “
Vascular Remodelling of Resistance Vessels: Can we Define This?
,”
Cardiovasc. Res.
,
41
(
1
), pp.
9
13
.10.1016/S0008-6363(98)00289-2
7.
Hayashi
,
K.
, and
Naiki
,
T.
,
2009
, “
Adaptation and Remodeling of Vascular Wall; Biomechanical Response to Hypertension
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
3
19
.10.1016/j.jmbbm.2008.05.002
8.
Taber
,
L. A.
, and
Eggers
,
D. W.
,
1996
, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
(
4
), pp.
343
357
.10.1006/jtbi.1996.0107
9.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
,
1996
, “
Theoretical Study of Dynamics of Arterial Wall Remodeling in Response to Changes in Blood Pressure
,”
J. Biomech.
,
29
(
5
), pp.
635
642
.10.1016/0021-9290(95)00108-5
10.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
11.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
12.
Rachev
,
A.
,
Taylor
,
W. R.
, and
Vito
,
R. P.
,
2013
, “
Calculation of the Outcomes of Remodeling of Arteries Subjected to Sustained Hypertension Using a 3D Two-Layered Model
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1539
1553
.10.1007/s10439-012-0727-9
13.
Mulvany
,
M. J.
,
Baumbach
,
G. L.
,
Aalkjaer
,
C.
,
Heagerty
,
A. M.
,
Korsgaard
,
N.
,
Schiffrin
,
E. L.
, and
Heistad
,
D. D.
,
1996
, “
Vascular Remodeling
,”
Hypertension
,
28
(
3
), pp.
505
506
.https://pubmed.ncbi.nlm.nih.gov/8794840/
14.
Schiffrin
,
E. L.
,
2004
, “
Remodeling of Resistance Arteries in Essential Hypertension and Effects of Antihypertensive Treatment
,”
Am. J. Hypertension
,
17
(
12
), pp.
1192
1200
.10.1016/j.amjhyper.2004.05.023
15.
Khavandi
,
K.
,
Greenstein
,
A. S.
,
Sonoyama
,
K.
,
Withers
,
S.
,
Price
,
A.
,
Malik
,
R. A.
, and
Heagerty
,
A. M.
,
2008
, “
Myogenic Tone and Small Artery Remodeling: Insight Into Diabetic Nephropathy
,”
Nephrol. Dial Transplant
,
24
(
2
), pp.
361
369
.10.1093/ndt/gfn583
16.
Heagerty
,
A. M.
,
Aalkjaer
,
C.
,
Bund
,
S. J.
,
Korsgaard
,
N.
, and
Mulvany
,
M. J.
,
1993
, “
Small Artery Structure in Hypertension: Dual Processes of Remodeling and Growth
,”
Hypertension
,
21
(
4
), pp.
391
397
.10.1161/01.HYP.21.4.391
17.
Castorena-Gonzalez
,
J. A.
,
Staiculescu
,
M. C.
,
Foote
,
C.
, and
Martinez-Lemus
,
L. A.
,
2014
, “
Mechanisms of the Inward Remodeling Process in Resistance Vessels: Is the Actin Cytoskeleton Involved?
,”
Microcirculation
,
21
(
3
), pp.
219
229
.10.1111/micc.12105
18.
van Varik
,
B. J.
,
Rennenberg
,
R. J.
,
Reutelingsperger
,
C. P.
,
Kroon
,
A. A.
,
de Leeuw
,
P. W.
, and
Schurgers
,
L. J.
,
2012
, “
Mechanisms of Arterial Remodeling: Lessons From Genetic Diseases
,”
Front Genet.
,
3
(
290
).10.3389/fgene.2012.00290
19.
Mulvany
,
M. J.
,
Hansen
,
O. K.
, and
Aalkjaer
,
C.
,
1978
, “
Direct Evidence That the Greater Contractility of Resistance Vessels in Spontaneously Hypertensive Rats is Associated With a Narrowed Lumen, a Thickened Media, and an Increased Number of Smooth Muscle Cell Layers
,”
Circ. Res.
,
43
(
6
), pp.
854
864
.10.1161/01.RES.43.6.854
20.
Schiffrin
,
E. L.
,
Deng
,
L. Y.
, and
Larochelle
,
P.
,
1993
, “
Morphology of Resistance Arteries and Comparison of Effects of Vasoconstrictors in Mild Essential Hypertensive Patients
,”
Clin. Invest. Med.
,
16
(
3
), pp.
177
186
.https://pubmed.ncbi.nlm.nih.gov/8365045/
21.
Humphrey
,
J. D.
,
2001
,
Cardiovascular Solid Mechanics
,
Springer
,
New York
.
22.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
466
.10.1114/1.191
23.
Fridez
,
P.
,
Stergiopulos
,
N.
,
Meister
,
J.
,
Makino
,
A.
,
Kakoi
,
D.
,
Miyasaki
,
H.
, and
Hayashi
,
K.
,
2000
, “
Biomechanical Adaptation of the Rat Carotid Artery to Hypertension: Contribution of Vascular Smooth Muscle Tone
,”
Mechanotransduction
,
C.
Ribreau
,
Y.
Berthaud
,
M.-R.
Moreau
,
L.
Ratier
,
J.-P.
Renaudeaux
,
M.
Thiriet
, and
S.
Wendling
, eds.,
Groupement Pour L'Avancement Des Methodes D'Analyse Des Contraintes
,
Condé-sur-Noireau, France
, pp.
65
73
.
24.
Bakker
,
E. N.
,
Buus
,
C. L.
,
Spaan
,
J. A.
,
Perree
,
J.
,
Ganga
,
A.
,
Rolf
,
T. M.
,
Sorop
,
O.
,
Bramsen
,
L. H.
,
Mulvany
,
M. J.
, and
Vanbavel
,
E.
,
2005
, “
Small Artery Remodeling Depends on Tissue-Type Transglutaminase
,”
Circ. Res.
,
96
(
1
), pp.
119
126
.10.1161/01.RES.0000151333.56089.66
25.
Gerthoffer
,
W. T.
,
2007
, “
Mechanisms of Vascular Smooth Muscle Cell Migration
,”
Circ. Res.
,
100
(
5
), pp.
607
621
.10.1161/01.RES.0000258492.96097.47
26.
Alexander
,
M. R.
, and
Owens
,
G. K.
,
2012
, “
Epigenetic Control of Smooth Muscle Cell Differentiation and Phenotypic Switching in Vascular Development and Disease
,”
Annu. Rev. Physiol.
,
74
(
1
), pp.
13
40
.10.1146/annurev-physiol-012110-142315
27.
Iyemere
,
V. P.
,
Proudfoot
,
D.
,
Weissberg
,
P. L.
, and
Shanahan
,
C. M.
,
2006
, “
Vascular Smooth Muscle Cell Phenotypic Plasticity and the Regulation of Vascular Calcification
,”
J. Intern. Med.
,
260
(
3
), pp.
192
210
.10.1111/j.1365-2796.2006.01692.x
28.
Heerkens
,
E. H.
,
Izzard
,
A. S.
, and
Heagerty
,
A. M.
,
2007
, “
Integrins, Vascular Remodeling, and Hypertension
,”
Hypertension
,
49
(
1
), pp.
1
4
.10.1161/01.HYP.0000252753.63224.3b
29.
Martinez-Lemus
,
L. A.
,
Hill
,
M. A.
, and
Meininger
,
G. A.
,
2009
, “
The Plastic Nature of the Vascular Wall: A Continuum of Remodeling Events Contributing to Control of Arteriolar Diameter and Structure
,”
Physiology (Bethesda)
,
24
(
1
), pp.
45
57
.10.1152/physiol.00029.2008
30.
Wagner
,
H. P.
, and
Humphrey
,
J. D.
,
2011
, “
Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051009
.10.1115/1.4003873
31.
Zahler
,
R. S.
, and
Sussmann
,
H. J.
,
1977
, “
Claims and Accomplishments of Applied Catastrophe Theory
,”
Nature
,
269
(
5631
), pp.
759
763
.10.1038/269759a0
32.
Intengan
,
H. D.
, and
Schiffrin
,
E. L.
,
2001
, “
Vascular Remodeling in Hypertension Roles of Apoptosis, Inflammation, and Fibrosis
,”
Hypertension
,
38
(
3
), pp.
581
587
.10.1161/hy09t1.096249
33.
Hadi
,
H. A.
,
Carr
,
C. S.
, and
Al Suwaidi
,
J.
,
2005
, “
Endothelial Dysfunction: Cardiovascular Risk Factors, Therapy, and Outcome
,”
Vasc. Health Risk Manag.
,
1
(
3
), pp.
183
198
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1993955/
34.
Vanhoutte
,
P. M.
,
Feletou
,
M.
, and
Taddei
,
S.
,
2005
, “
Endothelium-Dependent Contractions in Hypertension
,”
Br. J. Pharmacol.
,
144
(
4
), pp.
449
458
.10.1038/sj.bjp.0706042
35.
Furumoto
,
T.
,
Fujii
,
S.
,
Nishihara
,
K.
,
Yamada
,
H.
,
Onozuka
,
K.
,
Komuro
,
K.
,
Goto
,
W.
,
Di
,
T.
,
Mikami
,
H.
,
Nishijima
,
H.
, and
Kitabatake
,
A.
,
2003
, “
Presence of Endothelial Dysfunction is the Major Determinant of Maladaptive Vascular Remodeling in Brachial Arteries of Untreated Hypertensive Patients
,”
J. Am. Coll. Cardiol.
,
41
(
6
), p.
281
.10.1016/S0735-1097(03)82318-5
36.
Savoia
,
C.
,
Sada
,
L.
,
Zezza
,
L.
,
Pucci
,
L.
,
Lauri
,
F. M.
,
Befani
,
A.
,
Alonzo
,
A.
, and
Volpe
,
M.
,
2011
, “
Vascular Inflammation and Endothelial Dysfunction in Experimental Hypertension
,”
Int. J. Hypertens.
,
2011
, pp.
1
8
.10.4061/2011/281240
37.
Rachev
,
A.
, and
Shazly
,
T.
,
2020
, “
A Two-Dimensional Model of Hypertension-Induced Arterial Remodeling With Account for Stress Interaction Between Elastin and Collagen
,”
ASME J. Biomech. Eng.
,
142
(
4
), p.
041008
.10.1115/1.4045116
38.
Zhou
,
B.
,
Rachev
,
A.
, and
Shazly
,
T.
,
2015
, “
The Biaxial Active Mechanical Properties of the Porcine Primary Renal Artery
,”
J. Mech. Behav. Biomed. Mater.
,
48
, pp.
28
37
.10.1016/j.jmbbm.2015.04.004
39.
Eberth
,
J. F.
, and
Humphrey
,
J. D.
,
2022
, “
Reduced Smooth Muscle Contractile Capacity Facilitates Maladaptive Arterial Remodeling
,”
ASME J. Biomech. Eng.
,
144
(
4
), p.
044503
.10.1115/1.4052888
You do not currently have access to this content.