Abstract

Significant effort continues to be made to understand whether differences exist in the structural, compositional, and mechanical properties of cortical bone subjected to different strain modes or magnitudes. We evaluated juvenile sheep femora (age = 4 months) from the anterior and posterior quadrants at three points along the diaphysis as a model system for variability in loading. Micro-CT scans (50 micron) were used to measure cortical thickness and mineral density. Three point bending tests were performed to measure the flexural modulus, strength, and post-yield displacement. There was no difference in cortical thickness or density between anterior or posterior quadrants; however, density was consistently higher in the middle diaphysis. Interestingly, bending modulus and strength were higher in anterior quadrants compared to posterior quadrants. Together, our results suggest that there is a differential spatial response of bone in terms of elastic bending modulus and mechanical strength. The origins of this difference may lie within the variation in ongoing mineralization, in combination with the collagen-rich plexiform structure, and whether this is related to strain mode remains to be explored. These data suggest that in young ovine cortical bone, modulation of strength occurs via potentially complex interactions of both mineral and collagen-components that may be different in regions of bone exposed to variable amounts of strain. Further work is needed to confirm the physiological load state of bone during growth to better elucidate the degree to which these variations are a function of the local mechanical environment.

References

1.
Hammer
,
A.
,
2015
, “
The Paradox of Wolff's Theories
,”
Irish J. Med. Sci.
,
184
(
1
), pp.
13
22
.10.1007/s11845-014-1070-y
2.
Robling
,
A. G.
,
Duijvelaar
,
K. M.
,
Geevers
,
J. V.
,
Ohashi
,
N.
, and
Turner
,
C. H.
,
2001
, “
Modulation of Appositional and Longitudinal Bone Growth in the Rat Ulna by Applied Static and Dynamic Force
,”
Bone
,
29
(
2
), pp.
105
113
.10.1016/S8756-3282(01)00488-4
3.
Frost
,
H. M.
,
1987
, “
Bone “Mass” and the “Mechanostat”: A Proposal
,”
Anat. Rec.
,
219
(
1
), pp.
1
9
.10.1002/ar.1092190104
4.
Kersh
,
M. E.
,
Martelli
,
S.
,
Zebaze
,
R.
,
Seeman
,
E.
, and
Pandy
,
M. G.
,
2018
, “
Mechanical Loading of the Femoral Neck in Human Locomotion
,”
J. Bone Miner. Res.
,
33
(
11
), pp.
1999
2006
.10.1002/jbmr.3529
5.
Kersh
,
M. E.
,
Pandy
,
M. G.
,
Bui
,
Q. M.
,
Jones
,
A. C.
,
Arns
,
C. H.
,
Knackstedt
,
M. A.
,
Seeman
,
E.
, and
Zebaze
,
R. M.
,
2013
, “
The Heterogeneity in Femoral Neck Structure and Strength
,”
J. Bone Miner. Res.
,
28
(
5
), pp.
1022
1028
.10.1002/jbmr.1827
6.
Warden
,
S. J.
,
Mantila Roosa
,
S. M.
,
Kersh
,
M. E.
,
Hurd
,
A. L.
,
Fleisig
,
G. S.
,
Pandy
,
M. G.
, and
Fuchs
,
R. K.
,
2014
, “
Physical Activity When Young Provides Lifelong Benefits to Cortical Bone Size and Strength in Men
,”
Proc. Natl. Acad. Sci. USA
,
111
(
14
), pp.
5337
5342
.10.1073/pnas.1321605111
7.
Turner
,
C. H.
, and
Burr
,
D. B.
,
1993
, “
Basic Biomechanical Measurements of Bone: A Tutorial
,”
Bone
,
14
(
4
), pp.
595
608
.10.1016/8756-3282(93)90081-K
8.
Torrance
,
A. G.
,
Mosley
,
J. R.
,
Suswillo
,
R. F.
, and
Lanyon
,
L. E.
,
1994
, “
Noninvasive Loading of the Rat Ulna In Vivo Induces a Strain-Related Modeling Response Uncomplicated by Trauma or Periostal Pressure
,”
Calcif. Tissue Int.
,
54
(
3
), pp.
241
247
.10.1007/BF00301686
9.
Weatherholt
,
A. M.
,
Fuchs
,
R. K.
, and
Warden
,
S. J.
,
2013
, “
Cortical and Trabecular Bone Adaptation to Incremental Load Magnitudes Using the Mouse Tibial Axial Compression Loading Model
,”
Bone
,
52
(
1
), pp.
372
379
.10.1016/j.bone.2012.10.026
10.
Lieberman
,
D. E.
,
Pearson
,
O. M.
,
Polk
,
J. D.
,
Demes
,
B.
, and
Crompton
,
A. W.
,
2003
, “
Optimization of Bone Growth and Remodeling in Response to Loading in Tapered Mammalian Limbs
,”
J. Exp. Biol.
,
206
(
18
), pp.
3125
3138
.10.1242/jeb.00514
11.
Main
,
R. P.
,
2007
, “
Ontogenetic Relationships Between In Vivo Strain Environment, Bone His- Tomorphometry and Growth in the Goat Radius
,”
J. Anatomy
,
210
(
3
), pp.
272
293
.10.1111/j.1469-7580.2007.00696.x
12.
Lanyon
,
L. E.
, and
Baggott
,
D. G.
,
1976
, “
Mechanical Function as an Influence on the Structure and Form of Bone
,”
J. Bone Jt. Surg., Ser. B
,
58-B
(
4
), pp.
436
443
.10.1302/0301-620X.58B4.1018029
13.
Skedros
,
J. G.
,
Mason
,
M. W.
,
Nelson
,
M. C.
, and
Bloebaum
,
R. D.
,
1996
, “
Evidence of Structural and Material Adaptation to Specific Strain Features in Cortical Bone
,”
Anat. Rec.
,
246
(
1
), pp.
47
63
.10.1002/(SICI)1097-0185(199609)246:1<47::AID-AR6>3.0.CO;2-C
14.
Skedros
,
J. G.
,
Su
,
S. C.
, and
Bloebaum
,
R. D.
,
1997
, “
Biomechanical Implications of Mineral Con- Tent and Microstructural Variations in Cortical Bone of Horse, Elk, and Sheep Calcanei
,”
Anat. Rec.
,
249
(
3
), pp.
297
316
.10.1002/(SICI)1097-0185(199711)249:3<297::AID-AR1>3.0.CO;2-S
15.
Mayya
,
A.
,
Banerjee
,
A.
, and
Rajesh
,
R.
,
2013
, “
Mammalian Cortical Bone in Tension is Non-Haversian
,”
Sci. Rep.
,
3
(
1
), pp.
1
6
.10.1038/srep02533
16.
Skedros
,
J. G.
,
Dayton
,
M. R.
,
Sybrowsky
,
C. L.
,
Bloebaum
,
R. D.
, and
Bachus
,
K. N.
,
2006
, “
The Influence of Collagen Fiber Orientation and Other Histocompositional Characteristics on the Mechanical Properties of Equine Cortical Bone
,”
J. Exp. Biol.
,
209
(
15
), pp.
3025
3042
.10.1242/jeb.02304
17.
Cuppone
,
M.
,
Seedhom
,
B. B.
,
Berry
,
E.
, and
Ostell
,
A. E.
,
2004
, “
The Longitudinal Young's Modulus of Cortical Bone in the Midshaft of Human Femur and Its Correlation With CT Scanning Data
,”
Calcif. Tissue Int.
,
74
(
3
), pp.
302
309
.10.1007/s00223-002-2123-1
18.
Wallace
,
I. J.
,
Demes
,
B.
,
Mongle
,
C.
,
Pearson
,
O. M.
,
Polk
,
J. D.
, and
Lieberman
,
D. E.
,
2014
, “
Exercise-Induced Bone Formation is Poorly Linked to Local Strain Magnitude in the Sheep Tibia
,”
PLoS ONE
,
9
(
6
), pp.
e99108
5
.10.1371/journal.pone.0099108
19.
Jg
,
S.
,
Rd
,
B.
,
Mw
,
M.
, and
Dm
,
B.
,
1994
, “
Analysis of a Tension/Compression Skeletal System: Pos- Sible Strain-Specific Differences in the Hierarchical Organization of Bone
,”
Anat. Record
,
239
(
4
), pp.
396
404
.10.1002/ar.1092390406
20.
Rubin
,
C. T.
,
1984
, “
Skeletal Strain and the Functional Significance of Bone Architecture
,”
Calcif. Tissue Int.
,
36
(
S1
), pp.
S11
S18
.10.1007/BF02406128
21.
Shahar
,
R.
,
Banks-Sills
,
L.
, and
Eliasy
,
R.
,
2003
, “
Stress and Strain Distribution in the Intact Canine Femur: Finite Element Analysis
,”
Med. Eng. Phys.
,
25
(
5
), pp.
387
395
.10.1016/S1350-4533(03)00002-X
22.
Knothe Tate
,
M. L.
,
Steck
,
R.
,
Forwood
,
M. R.
, and
Niederer
,
P.
,
2000
, “
In Vivo Demonstration of Load- Induced Fluid Flow in the Rat Tibia and Its Potential Implications for Processes Associated With Functional Adaptation
,”
J. Exp. Biol.
,
203
(
18
), pp.
2737
2745
.10.1242/jeb.203.18.2737
23.
Lanyon
,
L. E.
,
Magee
,
P. T.
, and
Baggott
,
D. G.
,
1979
, “
The Relationship of Functional Stress and Strain to the Processes of Bone Remodelling. An Experimental Study on the Sheep Radius
,”
J. Biomech.
,
12
(
8
), pp.
593
600
.10.1016/0021-9290(79)90079-4
24.
Doutre
,
M. S.
,
Skedros
,
J. G.
,
Brown
,
E. B.
,
Skedros
,
G. A.
,
Mears
,
C. S.
, and
Bloebaum
,
R. D.
,
2016
, “ORS 2016 Annual Meeting Poster No. 1550: Temporal Changes in Sagittal Curvature and the Emergence of Load Predictability in the Sheep Radius,”
ORS 2016 Annual Meeting
, Vol.
225
, Orlando, FL, Mar. 5–8.https://teambone.com/wp-content/uploads/2021/05/119.-Doutre-et-al.-2016-Temporal-changes-in-sagittal-curvature-and-the-emergence-of-loadpredictability.pdf
25.
Lai
,
Y. M.
,
Qin
,
L.
,
Hung
,
V. W.
, and
Chan
,
K. M.
,
2005
, “
Regional Differences in Cortical Bone Mineral Density in the Weight-Bearing Long Bone Shaft—a pQCT Study
,”
Bone
,
36
(
3
), pp.
465
471
.10.1016/j.bone.2004.11.005
26.
Han
,
Y.
,
Cowin
,
S. C.
,
Schaffler
,
M. B.
, and
Weinbaum
,
S.
,
2004
, “
Mechanotransduction and Strain Amplification in Osteocyte Cell Processes
,”
Proc. Natl. Acad. Sci.
,
101
(
47
), pp.
16689
16694
.10.1073/pnas.0407429101
27.
Robling
,
A. G.
, and
Bonewald
,
L. F.
,
2020
, “
The Osteocyte: New Insights
,”
Annu. Rev. Phys.
,
82
(
1
), pp.
485
506
.10.1146/annurev-physiol-021119-034332
28.
Smalt
,
R.
,
Mitchell
,
F. T.
,
Howard
,
R. L.
, and
Chambers
,
T. J.
,
1997
, “
Induction of NO and Prostaglandin E2 in Osteoblasts by Wall-Shear Stress but Not Mechanical Strain
,”
Am. Can. J. Physiol. Endocrinol. Metab.
,
273
(
4
), pp.
E751
E758
.10.1152/ajpendo.1997.273.4.E751
29.
Thi
,
M. M.
,
Suadicani
,
S. O.
,
Schaffler
,
M. B.
,
Weinbaum
,
S.
, and
Spray
,
D. C.
,
2013
, “
Mechanosen- Sory Responses of Osteocytes to Physiological Forces Occur Along Processes and Not Cell Body and Require αvβ3 Integrin
,”
Proc. Natl. Acad. Sci. USA
,
110
(
52
), pp.
21012
21017
.10.1073/pnas.1321210110
30.
Skedros
,
J. G.
,
Mason
,
M. W.
, and
Bloebaum
,
R. D.
,
2001
, “
Modeling and Remodeling in a Developing Artiodactyl Calcaneus: A Model for Evaluating Frost's Mechanostat Hypothesis and Its Corollaries
,”
Anat. Rec.
,
263
(
2
), pp.
167
185
.10.1002/ar.1094
31.
Moustafa
,
A.
,
Sugiyama
,
T.
,
Prasad
,
J.
,
Zaman
,
G.
,
Gross
,
T.
,
Lanyon
,
L. E.
, and
Price
,
J.
,
2012
, “
Mechanical Loading-Related Changes in Osteocyte Sclerostin Expression in Mice Are More Closely Associated With the Subsequent Osteogenic Response Than the Peak Strains Engen- Dered
,”
Osteoporosis Int.
,
23
(
4
), pp.
1225
1234
.10.1007/s00198-011-1656-4
32.
Nguyen
,
J. T.
, and
Barak
,
M. M.
,
2020
, “
Secondary Osteon Structural Heterogeneity Between the Cranial and Caudal Cortices of the Proximal Humerus in White-Tailed Deer
,”
J. Exp. Biol.
,
223
(
11
), p.
jeb225482
.10.1242/jeb.225482
33.
Skedros
,
J. G.
,
2011
, “Chapter 7:
Interpreting Load History in Limb-Bone Diaphyses: Important Considerations and Their Biomechanical Foundations
,”
Bone Histology: An Anthropological Perspect.
, 1st ed., CRC Press, Boca Raton, FL, pp.
153
220
.10.1201/b11393
34.
Daegling
,
D. J.
,
Bhramdat
,
H. D.
, and
Toro-Ibacache
,
V.
,
2021
, “
Efficacy of Shear Strain Gradients as an Osteogenic Stimulus
,”
J. Theor. Biol.
,
524
, p.
110730
.10.1016/j.jtbi.2021.110730
35.
Keenan
,
K. E.
,
Mears
,
C. S.
, and
Skedros
,
J. G.
,
2017
, “
Utility of Osteon Circularity for Determining Species and Interpreting Load History in Primates and Nonprimates
,”
Am. J. Phys. Anthropol.
,
162
(
4
), pp.
657
681
.10.1002/ajpa.23154
36.
Riggs
,
C. M.
,
Lanyon
,
L. E.
, and
Boyde
,
A.
,
1993
, “
Functional Associations Between Collagen Fibre Orientation and Locomotor Strain Direction in Cortical Bone of the Equine Radius
,”
Anat. Embryol.
,
187
(
3
), pp.
231
238
.10.1007/BF00195760
37.
Mason
,
M. W.
,
Skedros
,
J. G.
, and
Bloebaum
,
R. D.
,
1995
, “
Evidence of Strain-Mode-Related Cortical Adaptation in the Diaphysis of the Horse Radius
,”
Bone
,
17
(
3
), pp.
229
237
.10.1016/8756-3282(95)00213-W
You do not currently have access to this content.