Abstract

Traumatic brain injury (TBI), particularly from explosive blasts, is a major cause of casualties in modern military conflicts. Computational models are an important tool in understanding the underlying biomechanics of TBI but are highly dependent on the mechanical properties of soft tissue to produce accurate results. Reported material properties of brain tissue can vary by several orders of magnitude between studies, and no published set of material parameters exists for porcine brain tissue at strain rates relevant to blast. In this work, brain tissue from the brainstem, cerebellum, and cerebrum of freshly euthanized adolescent male Göttingen minipigs was tested in simple shear and unconfined compression at strain rates ranging from quasi-static (QS) to 300 s−1. Brain tissue showed significant strain rate stiffening in both shear and compression. Minimal differences were seen between different regions of the brain. Both hyperelastic and hyper-viscoelastic constitutive models were fit to experimental stress, considering data from either a single loading mode (unidirectional) or two loading modes together (bidirectional). The unidirectional hyper-viscoelastic models with an Ogden hyperelastic representation and a one-term Prony series best captured the response of brain tissue in all regions and rates. The bidirectional models were generally able to capture the response of the tissue in high-rate shear and all compression modes, but not the QS shear. Our constitutive models describe the first set of material parameters for porcine brain tissue relevant to loading modes and rates seen in blast injury.

References

1.
Taylor
,
C. A.
,
Bell
,
J. M.
,
Breiding
,
M. J.
, and
Xu
,
L.
,
2017
, “
Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths - United States, 2007 and 2013
,”
MMWR Surveill. Summ.
,
66
(
9
), pp.
1
16
.10.15585/mmwr.ss6609a1
2.
Tanielian
,
T. L.
,
2008
,
Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequences, and Services to Assist Recovery
,
RAND Corporation
,
Santa Monica, CA
.
3.
Sundaramurthy
,
A.
, Kote, V. B., Pearson, N., Boiczyk, G. M., McNeil, E. M., Nelson, A. J., Subramaniam, D. R., et al.,
2021
, “
A 3-D Finite-Element Minipig Model to Assess Brain Biomechanical Responses to Blast Exposure
,”
Front. Bioeng. Biotechnol.
,
9
, p.
757755
.10.3389/fbioe.2021.757755
4.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
5.
Zhao
,
W.
,
Choate
,
B.
, and
Ji
,
S.
,
2018
, “
Material Properties of the Brain in Injury-Relevant conditions - Experiments and Computational Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
222
234
.10.1016/j.jmbbm.2018.02.005
6.
Unnikrishnan
,
G.
,
Mao
,
H.
,
Sundaramurthy
,
A.
,
Bell
,
E. D.
,
Yeoh
,
S.
,
Monson
,
K.
, and
Reifman
,
J.
,
2019
, “
A 3-D Rat Brain Model for Blast-Wave Exposure: Effects of Brain Vasculature and Material Properties
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
2033
2044
.10.1007/s10439-019-02277-2
7.
Meaney
,
D. F.
,
Morrison
,
B.
, and
Bass
,
C. D.
,
2014
, “
The Mechanics of Traumatic Brain Injury: A Review of What we Know and What we Need to Know for Reducing Its Societal Burden
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021008
.10.1115/1.4026364
8.
Sood
,
D.
,
Chwalek
,
K.
,
Stuntz
,
E.
,
Pouli
,
D.
,
Du
,
C.
,
Tang-Schomer
,
M.
,
Georgakoudi
,
I.
,
Black
,
L. D.
, and
Kaplan
,
D. L.
,
2016
, “
Fetal Brain Extracellular Matrix Boosts Neuronal Network Formation in 3D Bioengineered Model of Cortical Brain Tissue
,”
ACS Biomater. Sci. Eng.
,
2
(
1
), pp.
131
140
.10.1021/acsbiomaterials.5b00446
9.
Ruoslahti
,
E.
,
1996
, “
Brain Extracellular Matrix
,”
Glycobiology
,
6
(
5
), pp.
489
492
.10.1093/glycob/6.5.489
10.
Budday
,
S.
,
Ovaert
,
T. C.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2020
, “
Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue
,”
Arch. Comput. Methods Eng.
,
27
(
4
), pp.
1187
1230
.10.1007/s11831-019-09352-w
11.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2013
, “
Mechanical Characterization of Brain Tissue in Simple Shear at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
71
85
.10.1016/j.jmbbm.2013.07.017
12.
Donnelly
,
B. R.
, and
Medige
,
J.
,
1997
, “
Shear Properties of Human Brain Tissue
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
423
432
.10.1115/1.2798289
13.
Estes
,
M. S.
, and
McElhaney
,
J. H.
,
1970
, “
Response of Brain Tissue to Compressive Loading
,”
ASME
Paper No. 70-BHF-13.10.1115/70-BHF-13
14.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.10.1007/s10439-012-0519-2
15.
Subramaniam
,
D. R.
,
Unnikrishnan
,
G.
,
Sundaramurthy
,
A.
,
Rubio
,
J. E.
,
Kote
,
V. B.
, and
Reifman
,
J.
,
2021
, “
Cerebral Vasculature Influences Blast-Induced Biomechanical Responses of Human Brain Tissue
,”
Front. Bioeng. Biotechnol.
,
9
, p.
744808
.10.3389/fbioe.2021.744808
16.
Zhang
,
L.
,
Makwana
,
R.
, and
Sharma
,
S.
,
2013
, “
Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet
,”
Front. Neurol.
,
4
, p.
88
.10.3389/fneur.2013.00088
17.
Singh
,
D.
,
Cronin
,
D. S.
, and
Haladuick
,
T. N.
,
2014
, “
Head and Brain Response to Blast Using Sagittal and Transverse Finite Element Models
,”
Int. J. Numer. Method Biomed. Eng.
,
30
(
4
), pp.
470
489
.10.1002/cnm.2612
18.
Wu
,
T.
,
Hajiaghamemar
,
M.
,
Giudice
,
J. S.
,
Alshareef
,
A.
,
Margulies
,
S. S.
, and
Panzer
,
M. B.
,
2021
, “
Evaluation of Tissue-Level Brain Injury Metrics Using Species-Specific Simulations
,”
J. Neurotrauma
,
38
(
13
), pp.
1879
1888
.10.1089/neu.2020.7445
19.
Budday
,
S.
,
Sommer
,
G.
,
Birkl
,
C.
,
Langkammer
,
C.
,
Haybaeck
,
J.
,
Kohnert
,
J.
,
Bauer
,
M.
,
Paulsen
,
F.
,
Steinmann
,
P.
,
Kuhl
,
E.
, and
Holzapfel
,
G. A.
,
2017
, “
Mechanical Characterization of Human Brain Tissue
,”
Acta Biomater.
,
48
, pp.
319
340
.10.1016/j.actbio.2016.10.036
20.
Coats
,
B.
, and
Margulies
,
S. S.
,
2006
, “
Material Properties of Porcine Parietal Cortex
,”
J. Biomech.
,
39
(
13
), pp.
2521
2525
.10.1016/j.jbiomech.2005.07.020
21.
Jin
,
X.
,
Zhu
,
F.
,
Mao
,
H.
,
Shen
,
M.
, and
Yang
,
K. H.
,
2013
, “
A Comprehensive Experimental Study on Material Properties of Human Brain Tissue
,”
J. Biomech.
,
46
(
16
), pp.
2795
2801
.10.1016/j.jbiomech.2013.09.001
22.
Prange
,
M. T.
, and
Margulies
,
S. S.
,
2002
, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
244
252
.10.1115/1.1449907
23.
Li
,
Z.
, Ji, C., Li, D., Luo, R., Wang, G., and Jiang, J.,
2020
, “
A Comprehensive Study on the Mechanical Properties of Different Regions of 8-Week-Old Pediatric Porcine Brain Under Tension, Shear, and Compression at Various Strain Rates
,”
J. Biomech.
,
98
, p.
109380
.10.1016/j.jbiomech.2019.109380
24.
Begonia
,
M. T.
,
Prabhu
,
R.
,
Liao
,
J.
,
Horstemeyer
,
M. F.
, and
Williams
,
L. N.
,
2010
, “
The Influence of Strain Rate Dependency on the Structure-Property Relations of Porcine Brain
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3043
3057
.10.1007/s10439-010-0072-9
25.
Haslach
,
H. W.
,
Leahy
,
L. N.
,
Riley
,
P.
,
Gullapalli
,
R.
,
Xu
,
S.
, and
Hsieh
,
A. H.
, Jr.
,
2014
, “
Solid-Extracellular Fluid Interaction and Damage in the Mechanical Response of Rat Brain Tissue Under Confined Compression
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
138
150
.10.1016/j.jmbbm.2013.08.027
26.
Hosseini-Farid
,
M.
, Ramzanpour, M., McLean, J., Ziejewski, M., Karami, G.,
2020
, “
A Poro-Hyper-Viscoelastic Rate-Dependent Constitutive Modeling for the Analysis of Brain Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103475
.10.1016/j.jmbbm.2019.103475
27.
Karimi
,
A.
,
Rahmati
,
S. M.
, and
Razaghi
,
R.
,
2017
, “
A Combination of Experimental Measurement, Constitutive Damage Model, and Diffusion Tensor Imaging to Characterize the Mechanical Properties of the Human Brain
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
12
), pp.
1350
1363
.10.1080/10255842.2017.1362694
28.
Laksari
,
K.
,
Shafieian
,
M.
, and
Darvish
,
K.
,
2012
, “
Constitutive Model for Brain Tissue Under Finite Compression
,”
J. Biomech.
,
45
(
4
), pp.
642
646
.10.1016/j.jbiomech.2011.12.023
29.
Libertiaux
,
V.
,
Pascon
,
F.
, and
Cescotto
,
S.
,
2011
, “
Experimental Verification of Brain Tissue Incompressibility Using Digital Image Correlation
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1177
1185
.10.1016/j.jmbbm.2011.03.028
30.
Prevost
,
T. P.
,
Balakrishnan
,
A.
,
Suresh
,
S.
, and
Socrate
,
S.
,
2011
, “
Biomechanics of Brain Tissue
,”
Acta Biomater.
,
7
(
1
), pp.
83
95
.10.1016/j.actbio.2010.06.035
31.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Temperature Effects on Brain Tissue in Compression
,”
J. Mech. Behav. Biomed. Mater.
,
14
, pp.
113
118
.10.1016/j.jmbbm.2012.04.005
32.
Goldsmith
,
W.
,
2001
, “
The State of Head Injury Biomechanics: Past, Present, and Future: Part 1
,”
Crit. Rev. Biomed. Eng.
,
29
(
5–6
), pp.
441
600
.10.1615/CritRevBiomedEng.v29.i56.10
33.
Arbogast
,
K. B.
, and
Margulies
,
S. S.
,
1998
, “
Material Characterization of the Brainstem From Oscillatory Shear Tests
,”
J. Biomech.
,
31
(
9
), pp.
801
807
.10.1016/S0021-9290(98)00068-2
34.
Chatelin
,
S.
,
Deck
,
C.
, and
Willinger
,
R.
,
2013
, “
An Anisotropic Viscous Hyperelastic Constitutive Law for Brain Material Finite-Element Modeling
,”
J. Biorheology
,
27
(
1–2
), pp.
26
37
.10.1007/s12573-012-0055-6
35.
Haslach
,
H. W.
, Jr.
,
Gipple
,
J. M.
, and
Leahy
,
L. N.
,
2017
, “
Influence of High Deformation Rate, Brain Region, Transverse Compression, and Specimen Size on Rat Brain Shear Stress Morphology and Magnitude
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
88
102
.10.1016/j.jmbbm.2017.01.036
36.
Zhang
,
J.
,
Green
,
M. A.
,
Sinkus
,
R.
, and
Bilston
,
L. E.
,
2011
, “
Viscoelastic Properties of Human Cerebellum Using Magnetic Resonance Elastography
,”
J. Biomech.
,
44
(
10
), pp.
1909
1913
.10.1016/j.jbiomech.2011.04.034
37.
MacManus
,
D. B.
,
Pierrat
,
B.
,
Murphy
,
J. G.
, and
Gilchrist
,
M. D.
,
2017
, “
Region and Species Dependent Mechanical Properties of Adolescent and Young Adult Brain Tissue
,”
Sci. Rep.
,
7
(
1
), p.
13729
.10.1038/s41598-017-13727-z
38.
Lujan
,
T. J.
,
Underwood
,
C. J.
,
Jacobs
,
N. T.
, and
Weiss
,
J. A.
,
2009
, “
Contribution of Glycosaminoglycans to Viscoelastic Tensile Behavior of Human Ligament
,”
J. Appl. Physiol.
,
106
(
2
), pp.
423
431
.10.1152/japplphysiol.90748.2008
39.
Hrapko
,
M.
, van Dommelen, J. A. W., Peters, G. W. M., and Wismans, J. S. H. M.,
2008
, “
The Influence of Test Conditions on Characterization of the Mechanical Properties of Brain Tissue
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031003
.10.1115/1.2907746
40.
Gefen
,
A.
, and
Margulies
,
S. S.
,
2004
, “
Are In Vivo and in Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
,
37
(
9
), pp.
1339
1352
.10.1016/j.jbiomech.2003.12.032
41.
Kaster
,
T.
,
Sack
,
I.
, and
Samani
,
A.
,
2011
, “
Measurement of the Hyperelastic Properties of Ex Vivo Brain Tissue Slices
,”
J. Biomech.
,
44
(
6
), pp.
1158
1163
.10.1016/j.jbiomech.2011.01.019
42.
Lippert
,
S. A.
,
Rang
,
E. M.
, and
Grimm
,
M. J.
,
2004
, “
The High Frequency Properties of Brain Tissue
,”
Biorheology
,
41
(
6
), pp.
681
691
.https://pubmed.ncbi.nlm.nih.gov/15851844/
43.
Miller
,
K.
,
Chinzei
,
K.
,
Orssengo
,
G.
, and
Bednarz
,
P.
,
2000
, “
Mechanical Properties of Brain Tissue in-Vivo: Experiment and Computer Simulation
,”
J. Biomech.
,
33
(
11
), pp.
1369
1376
.10.1016/S0021-9290(00)00120-2
44.
Pervin
,
F.
, and
Chen
,
W. W.
,
2009
, “
Dynamic Mechanical Response of Bovine Gray Matter and White Matter Brain Tissues Under Compression
,”
J. Biomech.
,
42
(
6
), pp.
731
735
.10.1016/j.jbiomech.2009.01.023
45.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
23
38
.10.1016/j.jmbbm.2012.01.022
46.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2014
, “
Mechanical Characterization of Brain Tissue in Tension at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
43
54
.10.1016/j.jmbbm.2012.07.015
47.
Tamura
,
A.
,
Hayashi
,
S.
,
Watanabe
,
I.
,
Nagayama
,
K.
, and
Matsumoto
,
T.
,
2007
, “
Mechanical Characterization of Brain Tissue in High-Rate Compression
,”
J. Biomech. Sci. Eng.
,
2
(
3
), pp.
115
126
.10.1299/jbse.2.115
48.
Weickenmeier
,
J.
,
de Rooij
,
R.
,
Budday
,
S.
,
Ovaert
,
T. C.
, and
Kuhl
,
E.
,
2017
, “
The Mechanical Importance of Myelination in the Central Nervous System
,”
J. Mech. Behav. Biomed. Mater
,
76
, pp.
119
124
.10.1016/j.jmbbm.2017.04.017
49.
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Guan
,
Y.
,
Shender
,
B.
,
Paskoff
,
G.
, and
Laud
,
P.
,
2011
, “
Effects of Tissue Preservation Temperature on High Strain-Rate Material Properties of Brain
,”
J. Biomech.
,
44
(
3
), pp.
391
396
.10.1016/j.jbiomech.2010.10.024
50.
Bell
,
E. D.
, Converse, M., Mao, H., Unnikrishnan, G., Reifman, J., and Monson, K. L.,
2018
, “
Material Properties of Rat Middle Cerebral Arteries at High Strain Rates
,”
ASME J. Biomech. Eng.
, 140(7), p.
071004
.10.1115/1.4039625
51.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity – on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
52.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London
,
243
(
865
), pp.
251
288
.10.1098/rsta.1951.0004
53.
D'Errico
,
J.
,
2022
, “
Fminsearchbnd, Fminsearchcon
,” accessed Sept. 15, 2021, https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
54.
Puso
,
M. A.
, and
Weiss
,
J. A.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng
,
120
(
1
), pp.
62
70
.10.1115/1.2834308
55.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
,
New York
.
56.
Chatelin
,
S.
,
Vappou
,
J.
,
Roth
,
S.
,
Raul
,
J. S.
, and
Willinger
,
R.
,
2012
, “
Towards Child Versus Adult Brain Mechanical Properties
,”
J. Mech. Behav. Biomed. Mater.
,
6
, pp.
166
173
.10.1016/j.jmbbm.2011.09.013
57.
Pearson
,
N.
,
Boiczyk
,
G. M.
,
Kote
,
V. B.
,
Sundaramurthy
,
A.
,
Subramaniam
,
D. R.
,
Rubio
,
J. E.
,
Unnikrishnan
,
G.
,
Reifman
,
J.
, and
Monson
,
K.
,
2022
, “
A Strain Rate-Dependent Constitutive Model for Göttingen Minipig Cerebral Arteries
,”
ASME J. Biomech. Eng.
,
144
(
8
), p.
081007
.10.1115/1.4053796
58.
Mihai
,
L. A.
,
Budday
,
S.
,
Holzapfel
,
G. A.
,
Kuhl
,
E.
, and
Goriely
,
A.
,
2017
, “
A Family of Hyperelastic Models for Human Brain Tissue
,”
J. Mech. Phys. Solids
,
106
, pp.
60
79
.10.1016/j.jmps.2017.05.015
59.
Haslach
,
H. W.
, Jr.
,
Leahy
,
L. N.
, and
Hsieh
,
A. H.
,
2015
, “
Transient Solid-Fluid Interactions in Rat Brain Tissue Under Combined Translational Shear and Fixed Compression
,”
J. Mech. Behav. Biomed Mater.
,
48
, pp.
12
27
.10.1016/j.jmbbm.2015.04.003
60.
Budday
,
S.
,
Sommer
,
G.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2017
, “
Viscoelastic Parameter Identification of Human Brain Tissue
,”
J. Mech. Behav. Biomed Mater.
,
74
, pp.
463
476
.10.1016/j.jmbbm.2017.07.014
61.
Moran
,
R.
,
Smith
,
J. H.
, and
Garcia
,
J. J.
,
2014
, “
Fitted Hyperelastic Parameters for Human Brain Tissue From Reported Tension, Compression, and Shear Tests
,”
J. Biomech.
,
47
(
15
), pp.
3762
3766
.10.1016/j.jbiomech.2014.09.030
62.
Singh
,
D.
,
Boakye-Yiadom
,
S.
, and
Cronin
,
D. S.
,
2019
, “
Comparison of Porcine Brain Mechanical Properties to Potential Tissue Simulant Materials in Quasi-Static and Sinusoidal Compression
,”
J. Biomech.
,
92
, pp.
84
91
.10.1016/j.jbiomech.2019.05.033
63.
Li
,
Z.
,
Yang
,
H.
,
Wang
,
G.
,
Han
,
X.
, and
Zhang
,
S.
,
2019
, “
Compressive Properties and Constitutive Modeling of Different Regions of 8-Week-Old Pediatric Porcine Brain Under Large Strain and Wide Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
89
, pp.
122
131
.10.1016/j.jmbbm.2018.09.010
64.
Darvish
,
K. K.
, and
Crandall
,
J. R.
,
2001
, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
,
23
(
9
), pp.
633
645
.10.1016/S1350-4533(01)00101-1
65.
de Rooij
,
R.
, and
Kuhl
,
E.
,
2016
, “
Constitutive Modeling of Brain Tissue: Current Perspectives
,”
ASME Appl. Mech. Rev.
,
68
(
1
), p.
010801
.10.1115/1.4032436
66.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
67.
Wu
,
T.
,
Alshareef
,
A.
,
Giudice
,
J. S.
, and
Panzer
,
M. B.
,
2019
, “
Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1908
1922
.10.1007/s10439-019-02239-8
68.
Budday
,
S.
,
Sommer
,
G.
,
Haybaeck
,
J.
,
Steinmann
,
P.
,
Holzapfel
,
G. A.
, and
Kuhl
,
E.
,
2017
, “
Rheological Characterization of Human Brain Tissue
,”
Acta Biomater.
,
60
, pp.
315
329
.10.1016/j.actbio.2017.06.024
69.
Budday
,
S.
,
Nay
,
R.
,
de Rooij
,
R.
,
Steinmann
,
P.
,
Wyrobek
,
T.
,
Ovaert
,
T. C.
, and
Kuhl
,
E.
,
2015
, “
Mechanical Properties of Gray and White Matter Brain Tissue by Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
318
330
.10.1016/j.jmbbm.2015.02.024
70.
Christ
,
A. F.
,
Franze
,
K.
,
Gautier
,
H.
,
Moshayedi
,
P.
,
Fawcett
,
J.
,
Franklin
,
R. J.
,
Karadottir
,
R. T.
, and
Guck
,
J.
,
2010
, “
Mechanical Difference Between White and Gray Matter in the Rat Cerebellum Measured by Scanning Force Microscopy
,”
J. Biomech.
,
43
(
15
), pp.
2986
2992
.10.1016/j.jbiomech.2010.07.002
71.
Felfelian
,
A. M.
,
Baradaran Najar
,
A.
,
Jafari Nedoushan
,
R.
, and
Salehi
,
H.
,
2019
, “
Determining Constitutive Behavior of the Brain Tissue Using Digital Image Correlation and Finite Element Modeling
,”
Biomech. Model Mechanobiol.
,
18
(
6
), pp.
1927
1945
.10.1007/s10237-019-01186-6
72.
Moerman
,
K. M.
,
Holt
,
C. A.
,
Evans
,
S. L.
, and
Simms
,
C. K.
,
2009
, “
Digital Image Correlation and Finite Element Modelling as a Method to Determine Mechanical Properties of Human Soft Tissue In Vivo
,”
J. Biomech.
,
42
(
8
), pp.
1150
1153
.10.1016/j.jbiomech.2009.02.016
73.
Maghsoudi-Ganjeh
,
M.
,
Mariano
,
C. A.
,
Sattari
,
S.
,
Arora
,
H.
, and
Eskandari
,
M.
,
2021
, “
Developing a Lung Model in the Age of COVID-19: A Digital Image Correlation and Inverse Finite Element Analysis Framework
,”
Front. Bioeng. Biotechnol.
,
9
, p.
684778
.10.3389/fbioe.2021.684778
74.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Namani
,
R.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2013
, “
Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
117
132
.10.1016/j.jmbbm.2013.04.007
75.
Nicolle
,
S.
,
Lounis
,
M.
, and
Willinger
,
R.
,
2004
, “
Shear Properties of Brain Tissue Over a Frequency Range Relevant for Automotive Impact Situations: New Experimental Results
,”
Stapp Car Crash J.
,
48
, pp.
239
258
.10.4271/2004-22-0011
76.
Nicolle
,
S.
, Lounis, M., Willinger, R., Palierne, J-F.,
2005
, “
Shear Linear Behavior of Brain Tissue Over a Large Frequency Range
,”
Biorheology
,
42
(
3
), pp.
209
223
.https://pubmed.ncbi.nlm.nih.gov/15894820/
77.
Smith
,
D. H.
, and
Meaney
,
D. F.
,
2000
, “
Axonal Damage in Traumatic Brain Injury
,”
Neuroscientist
,
6
(
6
), pp.
483
495
.10.1177/107385840000600611
You do not currently have access to this content.