The general topic of this paper is the passive reconstruction of an acoustic transfer function from an unknown, generally nonstationary excitation. As recently shown in a study of building response to ground shaking, the paper demonstrates that, for a linear system subjected to an unknown excitation, the deconvolution operation between two receptions leads to the Green's function between the two reception points that is independent of the excitation. This is in contrast to the commonly used cross-correlation operation for passive reconstruction of the Green's function, where the result is always filtered by the source energy spectrum (unless it is opportunely normalized in a manner that makes it equivalent to a deconvolution). This concept is then applied to high-speed ultrasonic inspection of rails by passively reconstructing the rail's transfer function from the excitations naturally caused by the rolling wheels of a moving train. A first-generation prototype based on this idea was engineered using noncontact air-coupled sensors, mounted underneath a test railcar, and field tested at speeds up to 80 mph at the Transportation Technology Center (TTC), Pueblo, CO. This is the first demonstration of passive inspection of rails from train wheel excitations and, to the authors' knowledge, the first attempt ever made to ultrasonically inspect the rail at speeds above ∼30 mph (that is the maximum speed of common rail ultrasonic inspection vehicles). Once fully developed, this novel concept could enable regular trains to perform the inspections without any traffic disruption and with great redundancy.

References

1.
Lokbis
,
O. I.
, and
Weaver
,
R. L.
,
2001
, “
On the Emergence of the Green's Function in the Correlations of a Diffuse Field
,”
J. Acoust. Soc. Am.
,
110
, pp.
3011
3017
.
2.
Roux
,
P.
, and
Fink
,
M.
,
2003
, “
Green's Function Estimation Using Secondary Sources in a Shallow Water Environment
,”
J. Acoust. Soc. Am.
,
113
(
3
), pp.
1406
1416
.
3.
Derode
,
A.
,
Larose
,
E.
,
Tanter
,
M.
,
de Rosny
,
J.
,
Tourin
,
A.
,
Campillo
,
M.
, and
Fink
,
M.
,
2003
, “
Recovering the Green's Function From Field-Field Correlations in an Open Scattering Medium
,”
J. Acoust. Soc. Am.
,
113
(
6
), pp.
2973
2976
.
4.
Weaver
,
R. L.
, and
Lokbis
,
O. I.
,
2004
, “
Diffuse Fields in Open Systems and the Emergence of the Green's Function (L)
,”
J. Acoust. Soc. Am.
,
116
(
5
), pp.
2731
2734
.
5.
Snieder
,
R.
,
2004
, “
Extracting the Green's Function From the Correlation of Coda Waves: A Derivation Based on Stationary Phase
,”
Phys. Rev. Lett. E
,
69
(
4
), p.
046610
.
6.
Roux
,
P.
,
Sabra
,
K. G.
,
Kuperman
,
W.
, and
Roux
,
A.
,
2005
, “
Ambient Noise Cross Correlation in Free Space: Theoretical Approach
,”
J. Acoust. Soc. Am.
,
117
(
1
), pp.
79
84
.
7.
Sabra
,
K. G.
,
Roux
,
P.
, and
Kuperman
,
W. A.
,
2005
, “
Emergence Rate of the Time Domain Green's Function From the Ambient Noise Cross Correlation
,”
J. Acoust. Soc. Am.
,
118
(
6
), pp.
3524
3531
.
8.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2005
, “
Detection of Structural Damage From the Local Temporal Coherence of Diffuse Ultrasonic Signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
10
), pp.
1769
1782
.
9.
Larose
,
E.
,
Lobkis
,
O. I.
, and
Weaver
,
R. L.
,
2006
, “
Passive Correlation Imaging of a Buried Scatterer
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3549
3552
.
10.
Van Wijk
,
K.
,
2006
, “
On Estimating the Impulse Response Between Receivers in a Controlled Ultrasonic Model
,”
Geophysics
,
71
(
4
), pp.
SI79
SI84
.
11.
Sabra
,
K.
,
Srivastava
,
A.
,
Lanza di Scalea
,
F.
,
Bartoli
,
I.
,
Rizzo
,
P.
, and
Conti
,
S.
,
2008
, “
Structural Health Monitoring by Extraction of Coherent Guided Waves From Diffuse Fields
,”
J. Acoust. Soc. Am.
,
123
(
1
), pp.
EL8
EL13
.
12.
Tippmann
,
J. D.
, and
Lanza di Scalea
,
F.
,
2016
, “
Passive-Only Defect Detection and Imaging in Composites Using Diffuse Fields
,”
Mechanics of Composite and Multi-Functional Materials
, Vol.
7
,
Springer International Publishing
,
Cham, Switzerland
, pp.
67
72
.
13.
Tippmann
,
J.
, and
Lanza di Scalea
,
F.
,
2015
, “
Passive-Only Damage Detection by Reciprocity of Green's Functions Reconstructed From Diffuse Acoustic Fields With Application to Wind Turbine Blades
,”
J. Intell. Mater. Syst. Struct.
,
26
(
10
), pp.
1251
1258
.
14.
Tippmann
,
J.
,
Zhu
,
X.
, and
Lanza di Scalea
,
F.
,
2015
, “
Application of Damage Detection Methods Using Passive Reconstruction of Impulse Response Functions
,”
Philos. Trans. R. Soc. A.
,
373
(
2035
), pp.
1
17
.
15.
Duroux
,
A.
,
Sabra
,
K. G.
,
Ayers
,
J.
, and
Ruzzene
,
M.
,
2010
, “
Extracting Guided Waves From Cross-Correlations of Elastic Diffuse Fields: Applications to Remote Structural Health Monitoring
,”
J. Acoust. Soc. Am.
,
127
(
1
), pp.
204
215
.
16.
Chehami
,
L.
,
De Rosny
,
J.
,
Prada
,
C.
,
Moulin
,
E.
, and
Assaad
,
J.
,
2015
, “
Experimental Study of Passive Defect Localization in Plates Using Ambient Noise
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
62
(
8
), pp.
1544
1553
.
17.
Campillo
,
M.
, and
Paul
,
A.
,
2003
, “
Long-Range Correlations in the Diffuse Seismic Coda
,”
Science
,
299
(
5606
), pp.
547
549
.
18.
Roux
,
P.
,
Sabra
,
K. G.
,
Gerstoft
,
P.
,
Kuperman
,
W. A.
, and
Fehler
,
M. C.
,
2005
, “
P-Waves From Cross-Correlation of Seismic Noise
,”
Geophys. Res. Lett.
,
32
(19), p.
L193031
.
19.
Shapiro
,
N. M.
,
Campillo
,
M.
,
Stehly
,
L.
, and
Ritzwoller
,
M.
,
2005
, “
High Resolution Surface-Wave Tomography From Ambient Seismic Noise
,”
Science
,
307
(
5715
), pp.
1615
1617
.
20.
Sabra
,
K. G.
,
Gerstoft
,
P.
,
Roux
,
P.
,
Kuperman
,
W. A.
, and
Fehler
,
M. C.
,
2005
, “
Extracting Time-Domain Green's Function Estimates From Ambient Noise
,”
Geophys. Res. Lett.
,
32
(
3
), p.
L033101
.
21.
Sabra
,
K. G.
,
Gerstoft
,
P.
,
Roux
,
P.
,
Kuperman
,
W. A.
, and
Fehler
,
M. C.
,
2005
, “
Surface Wave Tomography From Microseisms in Southern California
,”
Geophys. Res. Lett.
,
32
(
14
), p.
L14311
.
22.
Roux
,
P.
,
Kuperman
,
W. A.
, and
The NPAL Group
,
2004
, “
Extracting Coherent Wave Fronts From Acoustic Ambient Noise in the Ocean
,”
J. Acoust. Soc. Am.
,
116
(
4
), pp.
1995
2003
.
23.
Sabra
,
K. G.
,
Roux
,
P.
, and
Kuperman
,
W. A.
,
2005
, “
Arrival-Time Structure of the Time-Averaged Ambient Noise Cross-Correlation Function in an Oceanic Waveguide
,”
J. Acoust. Soc. Am.
,
117
(
1
), pp.
164
174
.
24.
Farrar
,
C.
, and
James
,
G.
,
1997
, “
System Identification From Ambient Vibration Measurements on a Bridge
,”
J. Sound Vib.
,
205
(
1
), pp.
1
18
.
25.
Salvermoser
,
J.
, and
Hadziioannou
,
C.
,
2015
, “
Structural Monitoring of a Highway Bridge Using Passive Noise Recordings From Street Traffic
,”
J. Acoust. Soc. Am.
,
138
(
6
), pp.
3864
3872
.
26.
Sabra
,
K. G.
,
Winkel
,
E. S.
,
Bourgoyne
,
D. A.
,
Elbing
,
B. R.
,
Ceccio
,
S. L.
,
Perlin
,
M.
, and
Dowling
,
D. R.
,
2007
, “
Using Cross-Correlation of Turbulent Flow-Induced Ambient Vibrations to Estimate the Structural Impulse Response. Application to Structural Health Monitoring
,”
J. Acoust. Soc. Am.
,
121
(
4
), pp.
1987
1995
.
27.
Snieder
,
R.
, and
Safak
,
E.
,
2006
, “
Extracting the Building Response Using Seismic Interferometry: Theory and Application to the Millikan Library in Pasadena, California
,”
Bull. Seismol. Soc. Am.
,
96
(
2
), pp.
586
598
.
28.
Lanza di Scalea
,
F.
,
2007
, “
Ultrasonic Testing Applications in the Railroad Industry
,”
Non-Destructive Testing Handbook
, 3rd ed.,
P. O.
Moore
, ed.,
American Society for Nondestructive Testing
,
Columbus, OH
, pp.
535
552
.
29.
McNamara
,
J.
, and
Lanza di Scalea
,
F.
,
2002
, “
Air-Coupled Ultrasonic Testing of Railroad Rails
,”
Mater. Eval.
,
60
(
12
), pp.
1431
1437
.
30.
Coccia
,
S.
,
Phillips
,
R.
,
Bartoli
,
I.
,
Salamone
,
S.
,
Lanza di Scalea
,
F.
,
Fateh
,
M.
, and
Carr
,
G.
,
2011
, “
UCSD/FRA Non-Contact Ultrasonic Guided Wave System for Rail Inspection: An Update
,”
Transp. Res. Rec.
,
2261
, pp.
143
147
.
31.
Coccia
,
S.
,
Bartoli
,
I.
,
Marzani
,
A.
,
Lanza di Scalea
,
F.
,
Salamone
,
S.
, and
Fateh
,
M.
,
2011
, “
Numerical and Experimental Study of Guided Waves for Detection of Rail Head Defects
,”
NDT&E Int.
,
44
(
1
), pp.
93
100
.
32.
Mariani
,
S.
,
Nguyen
,
T.
,
Phillips
,
R.
,
Kijanka
,
P.
,
Lanza di Scalea
,
F.
,
Staszewski
,
W.
,
Fateh
,
M.
, and
Carr
,
G.
,
2013
, “
Non-Contact Air-Coupled Ultrasonic Guided Wave Inspection of Rails
,”
Struct. Health Monit. Int. J.
,
12
(
5–6
), pp.
539
548
.
33.
Mariani
,
S.
, and
Lanza di Scalea
,
F.
,
2017
, “
Predictions of Defect Detection Performance of Air-Coupled Ultrasonic Rail Inspection System
,”
Struct. Health Monit. Int. J.
, epub.
34.
Mariani
,
S.
,
Nguyen
,
T.
,
Zhu
,
X.
, and
Lanza di Scalea
,
F.
,
2017
, “
Field Test Performance of Non-Contact Ultrasonic Rail Inspection System
,”
ASCE J. Transp. Eng., Part A
,
143
(
5
), p.
040170071
.
35.
Sadoudi
,
L.
,
Moulin
,
E.
,
Assaad
,
J.
,
Benmeddour
,
F.
,
Bocquet
,
M.
, and
El Hillali
,
Y.
,
2016
, “
Experimental Study of Acoustic Noise Correlation Technique for Passive Monitoring of Rails
,”
Mater. Sci. Appl.
,
7
(12), pp.
848
862
.
36.
Woolfe
,
K. F.
, and
Sabra
,
K. G.
,
2015
, “
Variability of the Coherent Arrivals Extracted From Low-Frequency Deep-Ocean Ambient Noise Correlations
,”
J. Acoust. Soc. Am.
,
138
(
2
), pp.
521
532
.
37.
Thompson
,
D. J.
,
1993
, “
Wheel-Rail Noise Generation—Part I: Introduction and Interaction Model
,”
J. Sound Vib.
,
161
(
3
), pp.
387
400
.
38.
Thompson
,
D. J.
, and
Jones
,
C. J. C.
,
2000
, “
A Review of the Modelling of Wheel/Rail Noise Generation
,”
J. Sound Vib.
,
231
(
3
), pp.
519
536
.
39.
Wilcox
,
P.
,
Evans
,
M.
,
Pavlakovic
,
B.
,
Alleyne
,
D.
,
Vine
,
K.
,
Cawley
,
P.
, and
Lowe
,
M.
,
2003
, “
Guided Wave Testing of Rail
,”
Insight
,
45
(
6
), pp.
413
420
.
40.
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
,
Pavlakovic
,
B.
, and
Wilcox
,
P.
,
2003
, “
Practical Long Range Guided Wave Testing: Applications to Pipes and Rail
,”
Mater. Eval.
,
61
(
1
), pp.
66
74
.
41.
Hesse
,
D.
, and
Cawley
,
P.
,
2006
, “
Surface Wave Modes in Rails
,”
J. Acoust. Soc. Am.
,
120
(
2
), pp.
733
740
.
42.
Rose
,
J. L.
,
Avioli
,
M. J.
,
Mudge
,
P.
, and
Sanderson
,
R.
,
2004
, “
Guided Wave Inspection Potential of Defects in Rail
,”
NDT&E Int.
,
37
(
2
), pp.
153
161
.
43.
Rose
,
J. L.
,
Avioli
,
M. J.
, and
Song
,
W. J.
,
2002
, “
Application and Potential of Guided Wave Rail Inspection
,”
Insight
,
44
(
6
), pp.
353
358
.
44.
Bartoli
,
I.
,
Lanza di Scalea
,
F.
,
Fateh
,
M.
, and
Viola
,
E.
,
2005
, “
Modeling Guided Wave Propagation With Application to the Long-Range Defect Detection in Railroad Tracks
,”
NDT&E Int.
,
38
(
5
), pp.
325
334
.
45.
Worden
,
K.
,
Manson
,
G.
, and
Fieller
,
N. R. J.
,
2000
, “
Damage Detection Using Outlier Analysis
,”
J. Sound Vib.
,
229
(
3
), pp.
647
667
.
46.
Worden
,
K.
,
Sohn
,
H.
, and
Farrar
,
C. R.
,
2002
, “
Novelty Detection in a Changing Environment: Regression and Interpolation Approaches
,”
J. Sound Vib.
,
258
(
4
), pp.
741
761
.
You do not currently have access to this content.