Background. The discrete dynamics generated by a continuous map can be represented combinatorially by an appropriate multivalued map on a discretization of the phase space such as a cubical grid or triangulation. Method of approach. We describe explicit algorithms for computing dynamical structures for the combinatorial multivalued maps. Results. We provide computational complexity bounds and numerical examples. Specifically we focus on the computation attractor-repeller pairs and Lyapunov functions for Morse decompositions. Conclusions. The computed discrete Lyapunov functions are weak Lyapunov functions and well-approximate a continuous Lyapunov function for the underlying map.

1.
Kalies
,
W.
,
Mischaikow
,
K.
, and
VanderVorst
,
R.
, 2005, “
An Algorithmic Approach to Chain Recurrence
,”
Found Comput. Math.
1615-3375,
5
, pp.
409
449
.
2.
Mischaikow
,
K.
, 2002, “
Topological Techniques for Efficient Rigorous Computation in Dynamics
,”
Acta Numerica
0962-4929,
11
, pp.
435
477
.
3.
Szymczak
,
A.
, 1997, “
A Combinatorial Procedure for Finding Isolating Neighborhoods and Index Pairs
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
127
(
5
), pp.
1075
1088
.
4.
Day
,
S.
, 2003, “
A Rigorous Numerical Method in Infinite Dimensions
,” Ph.D. dissertation.
5.
Day
,
S.
,
Junge
,
O.
, and
Mischaikow
,
K.
, 2004, “
A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
3
(
2
), pp.
117
160
(electronic).
6.
Mrozek
,
M.
, 1999, “
An Algorithm Approach to the Conley Index Theory
,”
J. Dyn. Differ. Equ.
1040-7294,
11
(
4
), pp.
711
734
.
7.
Dellnitz
,
M.
,
Froyland
,
G.
, and
Junge
,
O.
, 2001, “
The Algorithms Behind GAIO-Set Oriented Numerical Methods for Dynamical Systems
,” in
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems
,
Springer
, Berlin, pp.
145
–174, 805–
807
.
9.
Cormen
,
T. H.
,
Leiserson
,
C. E.
, and
Rivest
,
R. L.
, 1990,
Introduction to Algorithms
.
The MIT Electrical Engineering and Computer Science Series
,
MIT Press
, Cambridge, MA.
10.
Robbin
,
J. W.
, and
Salamon
,
D. A.
, 1992, “
Lyapunov Maps, Simplicial Complexes and the Stone Functor
,”
Ergod. Theory Dyn. Syst.
0143-3857,
12
(
1
), pp.
153
183
.
11.
Conley
,
C.
, 1978,
Isolated Invariant Sets and the Morse Index
(
CBMS Regional Conference Series in Mathematics
, Vol.
38
), American Mathematical Society, Providence, RI.
12.
Franks
,
J.
, and
Misiurewicz
,
M.
, 2002, “
Topological Methods in Dynamics
,” in
Handbook of Dynamical Systems
, Vol.
1A
,
North-Holland
, Amsterdam, pp.
547
598
.
13.
Robinson
,
C.
, 1999,
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
, 2nd ed. (
Studies in Advanced Mathematics
),
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.