Abstract

In this work, the nonlinear dynamic behavior of turning operation has been studied considering flexible tool and thin cylindrical workpiece. The system is taken as a two-degree-of-freedom system with nonlinear stiffness and is subjected to self-excited vibration because of the regenerative effect. The cutting force is considered to be a combination of a constant and periodic force in addition to the force due to the regenerative effect. The regenerative effect during turning operation is included in the mathematical model, resulting in a nonlinear delay differential equation. Here, the natural frequency of the workpiece is assumed to be closed to that of the tool, leading to 1:1 internal resonance. Further, the frequency of the time-varying cutting force is assumed to be closed to the natural frequency of the workpiece giving rise to primary resonance condition. The nonlinear responses and the stability of the tool and the workpiece have been determined using a higher-order method of multiple scales (MMS) under internal and primary resonance conditions. The solution of the equation of motion using the MMS is validated by comparing the solution obtained using the numerical method. The effect of the tool and workpiece stiffness nonlinearities on steady-state frequency responses and stability is investigated, and system parameters are also identified to have stable turning operation. This work will find applications in estimating the system parameters for chatter-free turning operation with a flexible tool and workpiece when their dynamic compliances are comparable.

References

1.
Taylor
,
F. W.
,
1906
, “
On the Art Cutting Metals
,”
Trans. ASME
,
23
, pp.
31
350
.
2.
Arnold
,
R.
,
1946
, “
Cutting Tools Research: Report of Subcommittee on Carbide Tools: The Mechanism of Tool Vibration in the Cutting of Steel
,”
Proc. Inst. Mech. Eng.
,
154
(
1
), pp.
261
284
.10.1243/PIME_PROC_1946_154_037_02
3.
Tobias
,
S.
, and
Fishwick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
Engineer
,
205
(
7
), pp.
199
203
.
4.
Tlusty, J., and Polacek M. ,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,”
Proceedings of the ASME International Research in Production Engineering
, Pittsburgh, PA, pp.
465
474
.
5.
Merritt
,
H. E.
,
1965
, “
Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
447
454
.10.1115/1.3670861
6.
Deshpande
,
N.
, and
Fofana
,
M.
,
2001
, “
Nonlinear Regenerative Chatter in Turning
,”
Rob. Comput.-Integr. Manuf.
,
17
(
1–2
), pp.
107
112
.10.1016/S0736-5845(00)00043-0
7.
Chiou
,
R. Y.
, and
Liang
,
S. Y.
,
1998
, “
Chatter Stability of a Slender Cutting Tool in Turning With Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
315
327
.10.1016/S0890-6955(97)00079-5
8.
Urbicain
,
G.
,
Olvera
,
D.
,
López de Lacalle
,
L. N.
, and
Campa
,
F. J.
,
2010
, “
Stability Prediction in Turning of Flexible Components
,”
Adv. Mater. Res.
,
112
, pp.
149
157
.10.4028/www.scientific.net/AMR.112.149
9.
Öztürk
,
E.
, and
Budak
,
E.
,
2010
, “
Modeling Dynamics of Parallel Turning Operations
,” Four
th CIRP International Conference on High Performance Cutting
, Gifu, Japan, Oct. 24–26, pp.
24
26
.
10.
Ahmadi
,
K.
, and
Ismail
,
F.
,
2011
, “
Analytical Stability Lobes Including Nonlinear Process Damping Effect on Machining Chatter
,”
Int. J. Mach. Tools Manuf.
,
51
(
4
), pp.
296
308
.10.1016/j.ijmachtools.2010.12.008
11.
Chiou
,
Y.
,
Chung
,
E.
, and
Liang
,
S.
,
1995
, “
Analysis of Tool Wear Effect on Chatter Stability in Turning
,”
Int. J. Mech. Sci.
,
37
(
4
), pp.
391
404
.10.1016/0020-7403(94)00070-Z
12.
Chanda
,
A.
,
Fischer
,
A.
,
Eberhard
,
P.
, and
Dwivedy
,
S. K.
,
2014
, “
Stability Analysis of a Thin-Walled Cylinder in Turning Operation Using the Semi-Discretization Method
,”
Acta Mech. Sin.
,
30
(
2
), pp.
214
222
.10.1007/s10409-013-0097-z
13.
Fischer
,
A.
,
Eberhard
,
P.
, and
Ambrósio
,
J.
,
2014
, “
Parametric Flexible Multibody Model for Material Removal During Turning
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011007
.10.1115/1.4025283
14.
Sekar
,
M.
,
Srinivas
,
J.
,
Kotaiah
,
K. R.
, and
Yang
,
S.-H.
,
2009
, “
Stability Analysis of Turning Process With Tailstock-Supported Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
43
(
9–10
), pp.
862
871
.10.1007/s00170-008-1764-2
15.
Srinivas
,
J.
, and
Kotaiah
,
K. R.
,
2009
, “
A Study of Bifurcation Behaviour in Oblique Turning Operation
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
1042
1047
.10.1016/j.ijmachtools.2009.06.004
16.
Kotaiah
,
K.
, and
Srinivas
,
J.
,
2010
, “
Dynamic Analysis of a Turning Tool With a Discrete Model of the Workpiece
,”
Proc. Inst. Mech. Eng., Part B
,
224
(
2
), pp.
207
215
.10.1243/09544054JEM1677
17.
Vela-Martínez
,
L.
,
Jáuregui-Correa
,
J. C.
,
Rubio-Cerda
,
E.
,
Herrera-Ruiz
,
G.
, and
Lozano-Guzmán
,
A.
,
2008
, “
Analysis of Compliance Between the Cutting Tool and the Workpiece on the Stability of a Turning Process
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
1054
1062
.10.1016/j.ijmachtools.2007.10.016
18.
Chen
,
C.-K.
, and
Tsao
,
Y.
,
2006
, “
A Stability Analysis of Turning a Tailstock Supported Flexible Work-Piece
,”
Int. J. Mach. Tools Manuf.
,
46
(
1
), pp.
18
25
.10.1016/j.ijmachtools.2005.04.002
19.
Moradi
,
H.
,
Movahhedy
,
M. R.
, and
Vossoughi
,
G.
,
2012
, “
Dynamics of Regenerative Chatter and Internal Resonance in Milling Process With Structural and Cutting Force Nonlinearities
,”
J. Sound Vib.
,
331
(
16
), pp.
3844
3865
.10.1016/j.jsv.2012.03.003
20.
Kalmár-Nagy
,
T.
, and
Moon
,
F. C.
,
2003
, “
Mode-Coupled Regenerative Machine Tool Vibrations
,”
ASME
Paper No. DETC2003/VIB-48576. 10.1115/DETC2003/VIB-48576
21.
Hanna
,
N.
, and
Tobias
,
S.
,
1969
, “
The Non-Linear Dynamic Behaviour of a Machine Tool Structure
,”
Int. J. Mach. Tool Des. Res.
,
9
(
3
), pp.
293
307
.10.1016/0020-7357(69)90005-5
22.
Hanna
,
N.
, and
Tobias
,
S.
,
1974
, “
A Theory of Nonlinear Regenerative Chatter
,”
ASME J. Eng. Ind.
,
96
(
1
), pp.
247
255
.10.1115/1.3438305
23.
Nayfeh
,
A. H.
, and
Nayfeh
,
N. A.
,
2011
, “
Analysis of the Cutting Tool on a Lathe
,”
Nonlinear Dyn.
,
63
(
3
), pp.
395
416
.10.1007/s11071-010-9811-6
24.
Vela-Martínez
,
L.
,
Jáuregui-Correa
,
J. C.
,
González-Brambila
,
O. M.
,
Herrera-Ruiz
,
G.
, and
Lozano-Guzmán
,
A.
,
2009
, “
Instability Conditions Due to Structural Nonlinearities in Regenerative Chatter
,”
Nonlinear Dyn.
,
56
(
4
), pp.
415
427
.10.1007/s11071-008-9411-x
25.
Moradi
,
H.
,
Bakhtiari-Nejad
,
F.
,
Movahhedy
,
M. R.
, and
Ahmadian
,
M. T.
,
2010
, “
Nonlinear Behaviour of the Regenerative Chatter in Turning Process With a Worn Tool: Forced Oscillation and Stability Analysis
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1050
1066
.10.1016/j.mechmachtheory.2010.03.014
26.
Jalili
,
M. M.
, and
Emami
,
H.
,
2017
, “
Analytical Solution for Nonlinear Oscillation of Workpiece in Turning Process
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
19
), pp.
3479
3492
.10.1177/0954406216650471
27.
Tiwari
,
R.
,
2017
,
Rotor Systems: Analysis and Identification
,
CRC Press
, Boca Raton, FL.
28.
Rao
,
J. S.
,
1996
,
Rotor Dynamics
,
New Age International
, Wiley, New York.
29.
Mais
,
J.
,
2002
, “
Spectral Analysis: The Key Features of Analyzing Spectra
,” San Diego, CA, accessed May 15, 2018, http://www.skf.com/binary/tcm:12-113997/index.html
30.
Fischer
,
A.
, and
Eberhard
,
P.
,
2013
, “
Improving the Dynamic Stability of a Workpiece Dominated Turning Process Using an Adaptronic Tool Holder
,”
Theor. Appl. Mech. Lett.
,
3
(
1
), p.
013008
.10.1063/2.1301308
31.
Chen, B.-S., and Chang
,
Y.-F.
,
1989
, “
Constant Turning Force Adaptive Controller Design
,”
ASME J. Eng. Ind.
,
111
(2), pp. 125–132.10.1115/1.3188741
32.
Liu
,
D.
,
Sutherland
,
J.
,
Moon
,
K.
,
Sturos
,
T.
, and
Kashani
,
A.
,
1998
, “
Surface Texture Improvement in the Turning Process Via Application of a Magnetostrictively Actuated Tool Holder
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
2
), pp.
193
199
.10.1115/1.2802409
33.
Kalidasan
,
R.
,
Yatin
,
M.
,
Sarma
,
D.
,
Senthilvelan
,
S.
, and
Dixit
,
U.
,
2016
, “
An Experimental Study of Cutting Forces and Temperature in Multi-Tool Turning of Grey Cast Iron
,”
Int. J. Mach. Mach. Mater.
,
18
(
5/6
), pp.
540
551
.10.1504/IJMMM.2016.078992
34.
Kalidasan
,
R.
,
2017
, “
Experimental Investigations on Double Tool Turning Process
,”
Ph.D. thesis
,
Indian Institute of Technology Guwahati
, Guwahati, India.http://gyan.iitg.ernet.in/handle/123456789/872
35.
Yao
,
C.
,
Zhou
,
Z.
,
Zhang
,
J.
,
Wu
,
D.
, and
Tan
,
L.
,
2017
, “
Experimental tudy on Cutting Force of Face-Turning Inconel718 With Ceramic Tools and Carbide Tools
,”
Adv. Mech. Eng.
,
9
(
7
), p.
168781401771662
.10.1177/1687814017716620
36.
Nandakumar
,
K.
,
Wahi
,
P.
, and
Chatterjee
,
A.
,
2010
, “
Infinite Dimensional Slow Modulations in a Well Known Delayed Model for Cutting Tool Vibrations
,”
Nonlinear Dyn.
,
62
(
4
), pp.
705
716
.10.1007/s11071-010-9755-x
37.
Das
,
S.
, and
Chatterjee
,
A.
,
2005
, “
Second Order Multiple Scales for Oscillators With Large Delay
,”
Nonlinear Dyn.
,
39
(
4
), pp.
375
394
.10.1007/s11071-005-3814-8
38.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2008
, “
Self-Interrupted Regenerative Metal Cutting in Turning
,”
Int. J. Non-Linear Mech.
,
43
(
2
), pp.
111
123
.10.1016/j.ijnonlinmec.2007.10.010
39.
Dong
,
Z.
,
Zhang
,
S.
,
Xiong
,
Z.
, and
Rao
,
X.
,
2018
, “
A Generalized Dynamic Model for Spindle Vibration Influencing Surface Topography in Different Ultra-Precision Machining Processes
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2471
2478
.10.1007/s00170-018-1814-3
40.
Fernandez
,
A.
,
2017
, “
Vibration Analysis Learning: Frequencies of a Gear Assembly
,” Pembroke Pines, FL, accessed May 15, 2018, http://www.power-mi.com/content/frequencies-gear-assembly
41.
Davies
,
D.
,
2014
, “
Bearing and Gearbox Vibration Analysis Using Demodulation Techniques (Part 1)
,” Fareham UK, accessed May 15, 2018, http://blog.prosig.com/2014/05/01/bearings-gearbox-analysis-using-demodulation-techniques/
42.
Cardi
,
A. A.
,
Firpi
,
H. A.
,
Bement
,
M. T.
, and
Liang
,
S. Y.
,
2008
, “
Workpiece Dynamic Analysis and Prediction During Chatter of Turning Process
,”
Mech. Syst. Signal Process.
,
22
(
6
), pp.
1481
1494
.10.1016/j.ymssp.2007.11.026
43.
Moon
,
F. C.
, and
Kalmár-Nagy
,
T.
,
2001
, “
Nonlinear Models for Complex Dynamics in Cutting Materials
,”
Philos. Trans. R. Soc. London A
,
359
(
1781
), pp.
695
711
.10.1098/rsta.2000.0751
44.
Kim
,
P.
,
Bae
,
S.
, and
Seok
,
J.
,
2012
, “
Bifurcation Analysis on a Turning System With Large and State-Dependent Time Delay
,”
J. Sound Vib.
,
331
(
25
), pp.
5562
5580
.10.1016/j.jsv.2012.07.028
45.
Nayfeh
,
A. H.
,
Chin
,
C.-M.
, and
Pratt
,
J.
,
1997
, “
Perturbation Methods in Nonlinear Dynamics-Applications to Machining Dynamics
,”
ASME Trans. ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
485
493
.10.1115/1.2831178
46.
Pratt
,
J.
, and
Nayfeh
,
A.
,
1999
, “
Design and Modeling for Chatter Control
,”
Nonlinear Dyn.
,
19
(
1
), pp.
49
69
.10.1023/A:1008322520352
47.
Chanda
,
A.
, and
Dwivedy
,
S. K.
,
2018
, “
Nonlinear Dynamic Analysis of Flexible Workpiece and Tool in Turning Operation With Delay and Internal Resonance
,”
J. Sound Vib.
,
434
, pp.
358
378
.10.1016/j.jsv.2018.05.043
48.
Dwivedy
,
S.
, and
Kar
,
R.
,
1999
, “
Nonlinear Response of a Parametrically Excited System Using Higher-Order Method of Multiple Scales
,”
Nonlinear Dyn.
,
20
(
2
), pp.
115
130
.10.1023/A:1008358322080
49.
Zhang
,
H.
,
Jackson
,
M. J.
, and
Ni
,
J.
,
2009
, “
Stability Analysis on Spindle Speed Variation Method for Machining Chatter Suppression
,”
Int. J. Mach. Mach. Mater.
,
5
(
1
), pp.
107
128
.10.1504/IJMMM.2009.023116
50.
Jackson
,
M. J.
, and
Morrell
,
J. S.
,
2009
,
Machining With Nanomaterials
,
Springer
, New York.
You do not currently have access to this content.