Abstract

By introducing the subinterval perturbation method (SIPM), a hybrid compound function/subinterval perturbation method (HCFSPM) is presented for a dual-crane system (DCS) with large interval variables. The HCFSPM employs the SIPM to decompose a large interval variable into several subinterval variables with small uncertain levels. The interval kinematic compound function vectors and their inverses are approximated by the first-order Taylor and Neumann series, respectively. Based on the monotonic technique, the bounds of original luffing angle vectors are derived. Compared with the first-order compound function/interval perturbation method and the Monte Carlo method, numerical examples verify the effectiveness of the HCFSPM at conducting uncertain kinematic analysis of the DCS, especially when it comes to large uncertain levels.

References

1.
Zhou
,
B.
,
Zi
,
B.
, and
Qian
,
S.
,
2017
, “
Dynamics-Based Nonsingular Interval Model and Luffing Angular Response Field Analysis of the DACS With Narrowly Bounded Uncertainty
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2599
2626
.10.1007/s11071-017-3826-1
2.
Yao
,
F. L.
,
Meng
,
W. J.
,
Zhao
,
J.
,
She
,
Z. J.
,
Shi
,
G. S.
, and
Liu
,
H. B.
,
2018
, “
Buckling Theoretical Analysis on All-Terrain Crane Telescopic Boom With n-Stepped Sections
,”
J. Mech. Sci. Technol.
,
32
(
8
), pp.
3637
3644
.10.1007/s12206-018-0715-6
3.
Lu
,
B.
,
Fang
,
Y. C.
, and
Sun
,
N.
,
2018
, “
Modeling and Nonlinear Coordination Control for an Underactuated Dual Overhead Crane System
,”
Automatica
,
91
, pp.
244
255
.10.1016/j.automatica.2018.01.008
4.
Leban
,
F. A.
,
Diaz-Gonzalez
,
J.
,
Parker
,
G. G.
, and
Zhao
,
W. F.
,
2015
, “
Inverse Kinematic Control of a Dual Crane System Experiencing Base Motion
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
331
339
.10.1109/TCST.2014.2314020
5.
Zhao
,
X. S.
, and
Huang
,
J.
,
2019
, “
Distributed-Mass Payload Dynamics and Control of Dual Cranes Undergoing Planar Motions
,”
Mech. Syst. Signal Process.
,
126
, pp.
636
648
.10.1016/j.ymssp.2019.02.032
6.
Zi
,
B.
,
Zhou
,
B.
,
Zhu
,
W. D.
, and
Wang
,
D. M.
,
2019
, “
Hybrid Function-Based Moment Method for Luffing Angular Response of Dual Automobile Crane System With Random and Interval Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
1
), p.
011003
.10.1115/1.4041967
7.
Sun
,
N.
,
Fang
,
Y. C.
, and
Chen
,
H.
,
2015
, “
Adaptive Antiswing Control for Cranes in the Presence of Rail Length Constraints and Uncertainties
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
41
51
.10.1007/s11071-015-1971-y
8.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
9.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.10.1016/j.finel.2010.07.010
10.
Elishakoff
,
I.
, and
Yao
,
J. T. P.
,
1984
, “
Probabilistic Methods in the Theory of Structures
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
451
452
.10.1115/1.3167653
11.
Gao
,
W.
,
Wu
,
D.
,
Song
,
C. M.
,
Tin-Loi
,
F.
, and
Li
,
X. J.
,
2011
, “
Hybrid Probabilistic Interval Analysis of Bar Structures With Uncertainty Using a Mixed Perturbation Monte Carlo Method
,”
Finite Elem. Anal. Des.
,
47
(
7
), pp.
643
652
.10.1016/j.finel.2011.01.007
12.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2013
, “
Response Probability Analysis of Random Acoustic Field Based on Perturbation Stochastic Method and Change-of-Variable Technique
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051032
.10.1115/1.4024853
13.
Xia
,
B. Z.
,
Yu
,
D. J.
, and
Liu
,
J.
,
2014
, “
Transformed Perturbation Stochastic Finite Element Method for Static Response Analysis of Stochastic Structures
,”
Finite Elem. Anal. Des.
,
79
, pp.
9
21
.10.1016/j.finel.2013.10.003
14.
Wu
,
F.
,
Chen
,
K.
,
Wang
,
T. Y.
,
Yao
,
L. Y.
, and
Hu
,
M.
,
2019
, “
Stochastic Hybrid Perturbation Technique-Based Smoothed Finite Element-Statistical Energy Method for Mid-Frequency Analysis of Structure-Acoustic Systems With Parametric and Nonparametric Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
522
549
.10.1016/j.cma.2019.02.034
15.
Li
,
K.
,
Gao
,
W.
,
Wu
,
D.
,
Song
,
C. M.
, and
Chen
,
T. C.
,
2018
, “
Spectral Stochastic Isogeometric Analysis of Linear Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
157
190
.10.1016/j.cma.2017.12.012
16.
Choi
,
C. K.
, and
Yoo
,
H. H.
,
2017
, “
Stochastic Modeling and Vibration Analysis of Rotating Beams Considering Geometric Random Fields
,”
J. Sound Vib.
,
388
, pp.
105
122
.10.1016/j.jsv.2016.10.030
17.
Witteveen
,
J. A. S.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2007
, “
Modeling Physical Uncertainties in Dynamic Stall Induced Fluid-Structure Interaction of Turbine Blades Using Arbitrary Polynomial Chaos
,”
Comput. Struct.
,
85
(
11–14
), pp.
866
878
.10.1016/j.compstruc.2007.01.004
18.
Dubreuil
,
S.
,
Bartoli
,
N.
,
Gogu
,
C.
,
Lefebvre
,
T.
, and
Colomer
,
J. M.
,
2018
, “
Extreme Value Oriented Random Field Discretization Based on an Hybrid Polynomial Chaos Expansion-Kriging Approach
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
540
571
.10.1016/j.cma.2018.01.009
19.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1990
,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier
,
Amsterdam, The Netherlands
.
20.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2014
, “
Response Analysis of Acoustic Field With Convex Parameters
,”
ASME J. Vib. Acoust.
,
136
, p.
041017
.10.1115/1.4027631
21.
Ni
,
B. Y.
,
Jiang
,
C.
, and
Huang
,
Z. L.
,
2018
, “
Discussions on Non-Probabilistic Convex Modelling for Uncertain Problems
,”
Appl. Math. Modell.
,
59
, pp.
54
85
.10.1016/j.apm.2018.01.026
22.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Fuzzy Sets. Inf. Control
,
8
(
3
), pp.
338
353
.10.1016/S0019-9958(65)90241-X
23.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2016
, “
Subinterval Perturbation Methods for Uncertain Temperature Field Prediction With Large Fuzzy Parameters
,”
Int. J. Therm. Sci.
,
100
, pp.
381
390
.10.1016/j.ijthermalsci.2015.10.013
24.
Sun
,
D. Y.
,
Yan
,
S.
, and
Zhang
,
B. Q.
,
2019
, “
Dynamic Analysis of Planar Mechanisms With Fuzzy Joint Clearance and Random Geometry
,”
ASME J. Mech. Des.
,
141
(
4
), p.
042301
.10.1115/1.4042111
25.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge, UK
.
26.
Qiu
,
Z. P.
, and
Elishakoff
,
I.
,
1998
, “
Anti-Optimization of Structures With Large Uncertain-but-Non-Random Parameters Via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
.10.1016/S0045-7825(96)01211-X
27.
Xia
,
B. Z.
,
Qin
,
Y.
,
Yu
,
D. J.
, and
Jiang
,
C.
,
2016
, “
Dynamic Response Analysis of Structure Under Time-Variant Interval Process Model
,”
J. Sound Vib.
,
381
, pp.
121
138
.10.1016/j.jsv.2016.06.030
28.
Sofi
,
A.
,
Romeo
,
E.
,
Barrera
,
O.
, and
Cocks
,
A.
,
2019
, “
An Interval Finite Element Method for the Analysis of Structures With Spatially Varying Uncertainties
,”
Advance Eng. Software
,
128
, pp.
1
19
.10.1016/j.advengsoft.2018.11.001
29.
Luo
,
Y. J.
,
Zhan
,
J. J.
,
Xing
,
J.
, and
Kang
,
Z.
,
2019
, “
Non-Probabilistic Uncertainty Quantification and Response Analysis of Structures With a Bounded Field Model
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
663
678
.10.1016/j.cma.2018.12.043
30.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2014
, “
Modified Interval and Subinterval Perturbation Methods for the Static Response Analysis of Structures With Interval Parameters
,”
J. Struct. Eng.
,
140
(
5
), p.
04013113
.10.1061/(ASCE)ST.1943-541X.0000936
31.
Wang
,
C.
,
Qiu
,
Z. P.
, and
Li
,
Y. L.
,
2016
, “
Hybrid Uncertainty Propagation of Coupled Structural-Acoustic System With Large Fuzzy and Interval Parameters
,”
Appl. Acoust.
,
102
, pp.
62
70
.10.1016/j.apacoust.2015.09.006
You do not currently have access to this content.