Abstract

With the rising application of double-nut planetary roller screw mechanism (PRSM) into industry, increasing comprehensive studies are required to identify the interactions among motion, forces and deformations of the mechanism. A dynamic model of the double-nut PRSM with considering elastic deformations is proposed in this article. As preloads, inertial forces and elastic deformations have a great influence on the load distribution among threads, the double-nut PRSM is discretized into a spring–mass system. An adjacency matrix is introduced, which relates the elastic displacements of nodes and the deformations of elements in the spring–mass system. Then, the compressive force acting on the spacer is derived and the equations of load distribution are given. Considering both the equilibrium of forces and the compatibility of deformations, nonlinear equations of motion for the double-nut PRSM are developed. The effectiveness of the proposed model is verified by comparing dynamic characteristics and the load distribution among threads with those from the previously published models. Then, the dynamic analysis of a double-nut PRSM is carried out, when the rotational speed of the screw and the external force acting on the nut #2 are changed periodically. The results show that if the external force is increased, the preload of the nut #1 is decreased and that of the nut #2 is increased. Although the nominal radii of rollers are the same, the maximum contact force acting on the roller #2 is much larger than that of the roller #1.

References

1.
Lemor
,
P. C.
,
1996
, “
The Roller Screw: An Efficient and Reliable Mechanical Component of Electro-Mechanical Actuators
,”
Proceedings of the 31st Intersociety Energy Conversion Engineering Conference (IECEC 96)
, Washington, DC, Aug. 11–16, pp.
215
220
.10.1109/IECEC.1996.552873
2.
Budinger
,
M.
,
Reysset
,
A.
,
Halabi
,
T. E.
,
Vasiliu
,
C.
, and
Mare
,
J. C.
,
2014
, “
Optimal Preliminary Design of Electro-Mechanical Actuators
,”
Proc. Inst. Mech. Eng. Part G
,
228
(
9
), pp.
1598
1616
.10.1177/0954410013497171
3.
Karam
,
W.
, and
Mare
,
J. C.
,
2009
, “
Modelling and Simulation of Mechanical Transmission in Roller-Screw Electromechanical Actuators
,”
Aircr. Eng. Aerosp. Technol.
,
81
(
4
), pp.
288
298
.10.1108/00022660910967273
4.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2013
, “
Contact Kinematics in the Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051003
.10.1115/1.4023964
5.
Fu
,
X. J.
,
Liu
,
G.
,
Ma
,
S. J.
,
Tong
,
R. T.
, and
Teik
,
C. L.
,
2017
, “
A Comprehensive Contact Analysis of Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
139
(
1
), p.
012302
.10.1115/1.4034580
6.
Sandu
,
S.
,
Biboulet
,
N.
,
Nelias
,
D.
, and
Abevi
,
F.
,
2018
, “
An Efficient Method for Analyzing the Roller Screw Thread Geometry
,”
Mech. Mach. Theory
,
126
(
2018
), pp.
243
264
.10.1016/j.mechmachtheory.2018.04.004
7.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2014
, “
Stiffness of the Roller Screw Mechanism by the Direct Method
,”
Mech. Based Des. Struct. Mach.
,
42
(
1
), pp.
17
34
.10.1080/15397734.2013.839385
8.
Lisowski
,
F.
,
2017
, “
The Specific Dynamic Capacity of a Planetary Roller Screw With Random Deviations of a Thread Pitch
,”
J. Theor. Appl. Mech.
,
55
(
3
), pp.
991
1001
.10.15632/jtam-pl.55.3.991
9.
Blinov
,
D. S.
, and
Morozov
,
M. I.
,
2014
, “
Uneven Load Distribution Between Mating Windings of Roll and Screw With Nut of Planetary Roller Drive
,”
Sci. Educ. Bauman MSTU
, (
9
), pp.
1
14
.10.7463/0914.0727121
10.
Abevi
,
F.
,
Daidie
,
A.
,
Chaussumier
,
M.
, and
Sartor
,
M.
,
2016
, “
Static Load Distribution and Axial Stiffness in a Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
138
(
1
), p.
01230
.10.1115/1.4031859
11.
Abevi
,
F.
,
Daidie
,
A.
,
Chaussumier
,
M.
, and
Orieux
,
S.
,
2016
, “
Static Analysis of an Inverted Planetary Roller Screw Mechanism
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041020
.10.1115/1.4033159
12.
Velinsky
,
S. A.
,
Chu
,
B.
, and
Lasky
,
T. A.
,
2009
, “
Kinematics and Efficiency Analysis of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011016
.10.1115/1.3042158
13.
Liu
,
Y. Q.
,
Wang
,
J. S.
,
Cheng
,
H. G.
, and
Sun
,
Y. P.
,
2015
, “
Kinematics Analysis of the Roller Screw Based on the Accuracy of Meshing Point Calculation
,”
Math. Probl. Eng.
,
2015
, pp.
1
10
.10.1155/2015/303972
14.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2012
, “
Kinematics of Roller Migration in the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061006
.10.1115/1.4006529
15.
Sandu
,
S.
,
Biboulet
,
N.
,
Nelias
,
D.
, and
Abevi
,
F.
,
2019
, “
Analytical Prediction of the Geometry of Contact Ellipses and Kinematics in a Roller Screw Verus Experimental Results
,”
Mech. Mach. Theory
,
131
(
2019
), pp.
115
136
.10.1016/j.mechmachtheory.2018.09.013
16.
Mamaev
,
M. I.
,
Morozov
,
V. V.
,
Fedotov
,
O. V.
, and
Filimonov
,
V. N.
,
2016
, “
Harmonic Analysis of the Kinematic Error in a Planetary Roller Screw
,”
Russ. Eng. Res.
,
36
(
7
), pp.
515
519
.10.3103/S1068798X16070169
17.
Ma
,
S. J.
,
Cai
,
W.
,
Wu
,
L. P.
,
Liu
,
G.
, and
Peng
,
C.
,
2019
, “
Modeling of Transmission Accuracy of a Planetary Roller Screw Mechanism Considering Errors and Elastic Deformations
,”
Mech. Mach. Theory
,
134
, pp.
151
168
.10.1016/j.mechmachtheory.2018.12.025
18.
Auregan
,
G.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Rodrigues
,
F.
,
2015
, “
Experimental Simulation of Rolling-Sliding Contact for Application to Planetary Roller Screw Mechanism
,”
Wear
,
332
(
2015
), pp.
1176
1184
.10.1016/j.wear.2015.01.047
19.
Xie
,
Z. J.
,
Xue
,
Q
,
H.
,
Wu
,
J. Q.
,
Gu
,
L.
,
Wang
,
L. Q.
, and
Song
,
B. Y.
,
2019
, “
Mixed-Lubrication Analysis of Planetary Roller Screw
,”
Tribol. Int.
,
140
(
2019
), p.
105883
.10.1016/j.triboint.2019.105883
20.
Qiao
,
G.
,
Liu
,
G.
,
Ma
,
S. J.
,
Wang
,
Y. W.
,
Li
,
P.
, and
Lim
,
T. C.
,
2019
, “
Thermal Characteristics Analysis and Experimental Study of the Planetary Roller Screw Mechanism
,”
Appl. Therm. Eng.
,
149
(
2019
), pp.
1345
1358
.10.1016/j.applthermaleng.2018.12.137
21.
Jones
,
M. H.
,
Velinsky
,
S. A.
, and
Lasky
,
T. A.
,
2016
, “
Dynamics of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
014503
.10.1115/1.4030082
22.
Fu
,
X. J.
,
Liu
,
G.
,
Tong
,
R. T.
,
Ma
,
S. J.
, and
Lim
,
T. C.
,
2018
, “
A Nonlinear Six Degree of Freedom Dynamic Model of Planetary Roller Screw Mechanism
,”
Mech. Mach. Theory
,
119
(
2018
), pp.
22
36
.10.1016/j.mechmachtheory.2017.08.014
23.
Fu
,
X. J.
,
Liu
,
G.
,
Ma
,
S. J.
,
Tong
,
R. T.
, and
Li
,
X.
,
2020
, “
An Efficient Method for the Dynamic Analysis of Planetary Roller Screw Mechanism
,”
Mech. Mach. Theory
,
150
(
2020
), p.
103851
.10.1016/j.mechmachtheory.2020.103851
24.
Johnson
,
L. K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.