Abstract

Two predator-prey model describing the guava borers and natural enemies are studied in this paper. Positivity, existence, and uniqueness of the solution, global and local stability analysis of the fixed points of the first model based on the Caputo fractional operator are studied. By adding piecewise constant functions to the second model including conformable fractional operator allows us to transition discrete dynamical system via discretization process. Applying Schur-Cohn criterion to the discrete system, we hold some regions where the equilibrium points in the discretized model are local asymptotically stable. We prove that discretized model displays supercritical Neimark–Sacker bifurcation at the equilibrium point. Theoretical and numerical results show that the discretized system demonstrates richer dynamic properties such as quasi-periodic solutions, bifurcation, and chaotic dynamics than the fractional order model with Caputo operator. All theoretical results are interpreted biologically and the optimum time interval for the harvesting of the guava fruit is given.

References

1.
Lotka
,
A. J.
,
1925
, “
Elements of Physical Biology
,”
Nature
,
116
, p.
461
.10.1038/116461b0
2.
Volterra
,
V.
,
1926
,
Variazioni e Fluttuazioni Del Numero Dindividui in Specie Animali Conviventi
,
Memoria Della Reale Accademia Nazionale Dei Lincei
, Vol.
2
, pp.
31
113
.
3.
Mohammed
,
W. W.
,
Aly
,
E. S.
,
Matouk
,
A. E.
,
Albosaily
,
S.
, and
Elabbasy
,
E. M.
,
2021
, “
An Analytical Study of the Dynamic Behavior of Lotka-Volterra Based Models of COVID-19
,”
Results. Phys.
,
26
, p.
104432
.10.1016/j.rinp.2021.104432
4.
Yan
,
S.
, and
Du
,
Z.
,
2023
, “
Hopf Bifurcation in a Lotka-Volterra Competition-Diffusion-Advection Model With Time Delay
,”
J. Differ. Equ.
,
344
, pp.
74
101
.10.1016/j.jde.2022.10.037
5.
Schimming
,
R.
,
2003
, “
Conservation Laws for Lotka-Volterra Models
,”
Math. Methods Appl. Sci.
,
26
(
17
), pp.
1517
1528
.10.1002/mma.431
6.
Xie
,
X.
, and
Niu
,
L.
,
2021
, “
Global Stability in a Three-Species Lotka-Volterra Cooperation Model With Seasonal Succession
,”
Math. Methods Appl. Sci.
,
44
(
18
), pp.
14807
14822
.10.1002/mma.7744
7.
Zhao
,
J.
,
2020
, “
Complexity and Chaos Control in a Discrete-Time Lotka-Volterra Predator-Prey System
,”
J. Differ. Equ. Appl.
,
26
(
9–10
), pp.
1303
1320
.10.1080/10236198.2020.1825702
8.
Yousef
,
F.
,
Semmar
,
B.
, and
Al Nasr
,
K.
,
2022
, “
Incommensurate Conformable-Type Three-Dimensional Lotka-Volterra Model: Discretization, Stability, and Bifurcation
,”
Arab. J. Basic. Appl. Sci.
,
29
(
1
), pp.
113
120
.10.1080/25765299.2022.2071524
9.
Guerra
,
N. P.
,
2014
, “
Modeling the Batch Bacteriocin Production System by Lactic Acid Bacteria by Using Modified Three-Dimensional Lotka-Volterra Equations
,”
Biochem. Eng. J.
,
88
, pp.
115
130
.10.1016/j.bej.2014.04.010
10.
Matsuda
,
H.
,
Ogita
,
N.
,
Sasaki
,
A.
, and
Sato
,
K.
,
1992
, “
Statistical Mechanics of Population: The Lattice Lotka-Volterra Model
,”
Prog. Theor. Phys.
,
88
(
6
), pp.
1035
1049
.10.1143/ptp/88.6.1035
11.
Haslbeck
,
J. M. B.
, and
Ryan
,
O.
,
2022
, “
Recovering Within-Person Dynamics From Psychological Time Series
,”
Multivar. Behav. Res
,
57
(
5
), pp.
735
766
.10.1080/00273171.2021.1896353
12.
Comes
,
C. A.
,
2012
, “
Banking System: Three Level Lotka-Volterra Model
,”
Procedia. Econ. Financ.
,
3
, pp.
251
255
.10.1016/S2212-5671(12)00148-7
13.
Guo
,
H.
, and
Chen
,
L.
,
2009
, “
Time-Limited Pest Control of a Lotka-Volterra Model With Impulsive Harvest
,”
Nonlinear. Anal. Real. World. Appl.
,
10
(
2
), pp.
840
848
.10.1016/j.nonrwa.2007.11.007
14.
Arevalo
,
L. V. V.
,
Ku-Carrillo
,
R. A.
, and
Aleman
,
S. E. D.
,
2020
, “
Simple Models for Biological Control of Crop Pests and Their Application
,”
Math. Methods Appl. Sci.
,
43
(
14
), pp.
8006
8014
.10.1002/mma.5928
15.
Li
,
W.
,
Chen
,
Y.
,
Huang
,
L.
, and
Wang
,
J.
,
2022
, “
Global Dynamics of a Filippov Predator-Prey Model With Two Thresholds for Integrated Pest Management
,”
Chaos. Soliton. Fract.
,
157
, p.
111881
.10.1016/j.chaos.2022.111881
16.
Zhang
,
Y.
,
Tian
,
B.
,
Chen
,
X.
, and
Li
,
J.
,
2021
, “
A Stochastic Diseased Predator System With Modified LG-Holling Type II Functional Response
,”
Ecol. Complex
,
45
, p.
100881
.10.1016/j.ecocom.2020.100881
17.
Jiménez
,
M. F.
,
Blé
,
G.
, and
Falconi
,
M.
,
2022
, “
A Biocontrol Agent as a Commensal in a Plant-Pest Interaction
,”
Ecol. Modell.
,
468
, p.
109957
.10.1016/j.ecolmodel.2022.109957
18.
Karmaker
,
S.
,
Ruhi
,
F. Y.
, and
Mallick
,
U. K.
,
2018
, “
Mathematical Analysis of a Model on Guava for Biological Pest Control
,”
Math. Model. Eng. Probl.
,
5
(
4
), pp.
427
440
.10.18280/mmep.050420
19.
Singh
,
J.
,
Ganbari
,
B.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2021
, “
Analysis of Fractional Model of Guava for Biological Pest Control With Memory Effect
,”
J. Adv. Res.
,
32
, pp.
99
108
.10.1016/j.jare.2020.12.004
20.
Hosseini
,
K.
,
Sadri
,
K.
,
Mirzazadeh
,
M.
,
Salahshour
,
S.
,
Park
,
C.
, and
Lee
,
J. R.
,
2022
, “
The Guava Model Involving the Conformable Derivative and Its Mathematical Analysis
,”
Fractals
,
30
(
10
), p.
2240195
.10.1142/S0218348X22401958
21.
Lin
,
Z.
,
Wang
,
J. R.
, and
Wei
,
W.
,
2015
, “
Fractional Differential Equation Models With Pulses and Criterion for Pest Management
,”
Appl. Math. Comput.
,
257
, pp.
398
408
.10.1016/j.amc.2014.10.087
22.
Mandal
,
D. S.
,
Sha
,
A.
, and
Chattopadhyay
,
J.
,
2019
, “
Dynamical Study of Fractional Order Differential Equations of Predator-Pest Models
,”
Math. Methods Appl. Sci.
,
42
(
12
), pp.
4225
4243
.10.1002/mma.5641
23.
Kidd
,
D.
,
Sha
,
A.
, and
Amarasekare
,
P.
,
2012
, “
The Role of Transient Dynamics in Biological Pest Control: Insights From a Host-Parasitoid Community
,”
J. Anim. Ecol.
,
81
(
1
), pp.
47
57
.10.1111/j.1365-2656.2011.01881.x
24.
Khalil
,
R.
,
Al Horani
,
M.
,
Yousef
,
A.
, and
Sababheh
,
M.
,
2014
, “
A New Definition of Fractional Derivative
,”
J. Comput. Appl. Math.
,
264
, pp.
65
70
.10.1016/j.cam.2014.01.002
25.
Abdeljawad
,
T.
,
2015
, “
On Conformable Fractional Calculus
,”
J. Comput. Appl. Math.
,
279
, pp.
57
66
.10.1016/j.cam.2014.10.016
26.
Odibat
,
Z. M.
, and
Shawagfeh
,
N. T.
,
2007
, “
Generalized Taylor's Formula
,”
Appl. Math. Comput.
,
186
(
1
), pp.
286
293
.10.1016/j.amc.2006.07.102
27.
De-León
,
C. V.
,
2015
, “
Volterra-Type Lyapunov Functions for Fractional-Order Epidemic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
24
, pp.
75
85
.10.1016/j.cnsns.2014.12.013
28.
Huo
,
J.
,
Zhao
,
H.
, and
Zhu
,
L.
,
2015
, “
The Effect of Vaccines on Backward Bifurcation in a Fractional Order HIV Model, Nonlinear
,”
Anal. Real World Appl.
,
26
, pp.
289
305
.10.1016/j.nonrwa.2015.05.014
29.
Ahmed
,
A.
,
El-Sayed
,
A. M. A.
, and
El-Saka
,
H. A. A.
,
2006
, “
On Some Routh-Hurwitz Conditions for Fractional Order Differential Equations and Their Applications in Lorenz, Rössler, Chua and Chen Systems
,”
Phys. Lett. A
,
358
(
1
), pp.
1
4
.10.1016/j.physleta.2006.04.087
30.
Elaydi
,
S. N.
,
1996
,
An Introduction to Difference Equations
,
Springer-Verlag
,
New York
.
31.
He
,
Z.
, and
Li
,
B.
,
2014
, “
Complex Dynamic Behavior of a Discrete Time Predator-Prey System of Holling-III Type
,”
Adv. Differ. Equ.
,
2014
(
1
), p.
2014
.10.1186/1687-1847-2014-180
32.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields
,
Springer-Verlag
,
New York
.
33.
Kangalgil
,
F.
,
2019
, “
Neimark-Sacker Bifurcation and Stability Analysis of a Discrete-Time Prey-Predator Model With Allee Effect in Prey
,”
Adv. Differ. Equ.
,
2019
(
1
), p.
2019
. 10.1186/s13662-019-2039-y
34.
He
,
Z.
, and
Lai
,
X.
,
2011
, “
Bifurcation and Chaotic Behavior of a Discrete-Time Predator-Prey System
,”
Nonlinear. Anal. Real.
,
12
(
1
), pp.
403
417
.10.1016/j.nonrwa.2010.06.026
35.
Chen
,
B.
, and
Chen
,
J.
,
2012
, “
Bifurcation and Chaotic Behavior of a Discrete Singular Biological Economic System
,”
Appl. Math. Comput.
,
219
(
5
), pp.
2371
2386
.10.1016/j.amc.2012.07.043
36.
Kangalgil
,
F.
, and
Isýk
,
S.
,
2020
, “
Controlling Chaos and Neimark-Sacker Bifurcation in a Discrete-Time Predator-Prey System
,”
Hacet. J. Math. Stat.
,
49
, pp.
1761
1776
.10.15672/hujms.531024
37.
Marsden
,
J. E.
, and
McCracken
,
M.
,
1976
,
The Hopf Bifurcation and Its Applications
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.