Abstract

A novel numerical scheme for the time-fractional Kuramoto–Sivashinsky equation is presented in this article. A modification of the Atangana–Baleanu Caputo derivative known as the modified Atangana–Baleanu Caputo operator is introduced for the time-fractional derivative. A Taylor series-based formula is used to derive a second-order accurate approximation to the modified Atangana–Baleanu Caputo derivative. A linear combination of the quintic B-spline basis functions is used to approximate the functions in a spatial direction. Moreover, through rigorous analysis, it has been proved that the present scheme is unconditionally stable and convergent. Finally, two test problems are solved numerically to demonstrate the proposed method's superconvergence and accuracy.

References

1.
Oldham
,
K.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
,
Elsevier
,
New York
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
3.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
4.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
, Vol.
204
,
Elsevier
,
Amsterdam, The Netherlands
.
5.
Gómez-Aguilar
,
J. F.
,
Yépez-Martínez
,
H.
,
Escobar-Jiménez
,
R. F.
,
Olivares-Peregrino
,
V. H.
,
Reyes
,
J. M.
, and
Sosa
,
I. O.
,
2016
, “
The Feng's First Integral Method Applied to the Nonlinear mKdV Space-Time Fractional Partial Differential Equation
,”
Rev. Mex. Fís.
,
2016
(
4
), pp.
1
8
.10.1155/2016/7047126
6.
Baleanu
,
D.
,
Machado
,
J. A. T.
, and
Luo
,
A. C.
,
2011
,
Fractional Dynamics and Control
,
Springer Science & Business Media
,
New York
.
7.
Magin
,
R.
,
2004
, “
Fractional Calculus in Bioengineering, Part 1
,”
Crit. Rev. Biomed. Eng.
,
32
(
1
), pp.
1
104
.10.1615/CritRevBiomedEng.v32.10
8.
Ellahi
,
R.
,
Alamri
,
S. Z.
,
Basit
,
A.
, and
Majeed
,
A.
,
2018
, “
Effects of MHD and Slip on Heat Transfer Boundary Layer Flow Over a Moving Plate Based on Specific Entropy Generation
,”
J. Taibah Univ. Sci.
,
12
(
4
), pp.
476
482
.10.1080/16583655.2018.1483795
9.
Li
,
C.
,
Qian
,
D.
, and
Chen
,
Y.
,
2011
, “
On Riemann-Liouville and Caputo Derivatives
,”
Discrete Dyn. Nat. Soc.
,
2011
, pp.
1
15
.10.1155/2011/562494
10.
Tenreiro Machado
,
J.
,
Silva
,
M. F.
,
Barbosa
,
R. S.
,
Jesus
,
I. S.
,
Reis
,
C. M.
,
Marcos
,
M. G.
, and
Galhano
,
A. F.
,
2010
, “
Some Applications of Fractional Calculus in Engineering
,”
Math. Probl. Eng.
,
2010
, pp.
1
34
.10.1155/2010/639801
11.
Atangana
,
A.
, and
Gómez-Aguilar
,
J.
,
2018
, “
Numerical Approximation of Riemann-Liouville Definition of Fractional Derivative: From Riemann-Liouville to Atangana-Baleanu
,”
Numer. Methods Partial Differ. Equations
,
34
(
5
), pp.
1502
1523
.10.1002/num.22195
12.
Gómez-Aguilar
,
J.
, and
Atangana
,
A.
,
2017
, “
New Insight in Fractional Differentiation: Power, Exponential Decay and Mittag-Leffler Laws and Applications
,”
Eur. Phys. J. Plus
,
132
(
1
), pp.
1
21
.10.1140/epjp/i2017-11293-3
13.
Cuahutenango-Barro
,
B.
,
Taneco-Hernández
,
M. A.
, and
Gómez-Aguilar
,
J. F.
,
2018
, “
On the Solutions of Fractional-Time Wave Equation With Memory Effect Involving Operators With Regular Kernel
,”
Chaos, Solitons Fractals
,
115
, pp.
283
299
.10.1016/j.chaos.2018.09.002
14.
Gómez-Aguilar
,
J. F.
,
Miranda-Hernández
,
M.
,
López-López
,
M.
,
Alvarado-Martínez
,
V. M.
, and
Baleanu
,
D.
,
2016
, “
Modeling and Simulation of the Fractional Space-Time Diffusion Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
30
(
1–3
), pp.
115
127
.10.1016/j.cnsns.2015.06.014
15.
Gómez-Aguilar
,
J.
,
2017
, “
Space–Time Fractional Diffusion Equation Using a Derivative With Nonsingular and Regular Kernel
,”
Phys. A
,
465
, pp.
562
572
.10.1016/j.physa.2016.08.072
16.
Saad
,
K. M.
, and
Gómez-Aguilar
,
J. F.
,
2018
, “
Analysis of Reaction–Diffusion System Via a New Fractional Derivative With Non-Singular Kernel
,”
Phys. A
,
509
, pp.
703
716
.10.1016/j.physa.2018.05.137
17.
Aliyu
,
A. I.
,
Inc
,
M.
,
Yusuf
,
A.
, and
Baleanu
,
D.
,
2018
, “
A Fractional Model of Vertical Transmission and Cure of Vector-Borne Diseases Pertaining to the Atangana–Baleanu Fractional Derivatives
,”
Chaos, Solitons Fractals
,
116
, pp.
268
277
.10.1016/j.chaos.2018.09.043
18.
Owolabi
,
K. M.
, and
Atangana
,
A.
,
2017
, “
Analysis and Application of New Fractional Adams–Bashforth Scheme With Caputo–Fabrizio Derivative
,”
Chaos, Solitons Fractals
,
105
, pp.
111
119
.10.1016/j.chaos.2017.10.020
19.
Akgül
,
A.
, and
Modanli
,
M.
,
2019
, “
Crank–Nicholson Difference Method and Reproducing Kernel Function for Third Order Fractional Differential Equations in the Sense of Atangana–Baleanu Caputo Derivative
,”
Chaos, Solitons Fractals
,
127
, pp.
10
16
.10.1016/j.chaos.2019.06.011
20.
Tajadodi
,
H.
,
2020
, “
A Numerical Approach of Fractional Advection-Diffusion Equation With Atangana–Baleanu Derivative
,”
Chaos, Solitons Fractals
,
130
, p.
109527
.10.1016/j.chaos.2019.109527
21.
Bas
,
E.
, and
Ozarslan
,
R.
,
2018
, “
Real World Applications of Fractional Models by Atangana–Baleanu Fractional Derivative
,”
Chaos, Solitons Fractals
,
116
, pp.
121
125
.10.1016/j.chaos.2018.09.019
22.
Gao
,
W.
,
Ghanbari
,
B.
, and
Baskonus
,
H. M.
,
2019
, “
New Numerical Simulations for Some Real World Problems With Atangana–Baleanu Fractional Derivative
,”
Chaos, Solitons Fractals
,
128
, pp.
34
43
.10.1016/j.chaos.2019.07.037
23.
Diethelm
,
K.
,
Garrappa
,
R.
,
Giusti
,
A.
, and
Stynes
,
M.
,
2020
, “
Why Fractional Derivatives With Nonsingular Kernels Should Not Be Used
,”
Fractional Calculus Appl. Anal.
,
23
(
3
), pp.
610
634
.10.1515/fca-2020-0032
24.
Al-Refai
,
M.
, and
Baleanu
,
D.
,
2022
, “
On an Extension of the Operator With Mittag-Leffler Kernel
,”
Fractals
,
30
(
05
), p.
2240129
.10.1142/S0218348X22401296
25.
Kuramoto
,
Y.
,
1978
, “
Diffusion-Induced Chaos in Reaction Systems
,”
Prog. Theor. Phys. Suppl.
,
64
, pp.
346
367
.10.1143/PTPS.64.346
26.
Sivashinsky
,
G. I.
,
1980
, “
On Flame Propagation Under Conditions of Stoichiometry
,”
SIAM J. Appl. Math.
,
39
(
1
), pp.
67
82
.10.1137/0139007
27.
Anders
,
D.
,
Dittmann
,
M.
, and
Weinberg
,
K.
,
2012
, “
A Higher-Order Finite Element Approach to the Kuramoto-Sivashinsky Equation
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
92
(
8
), pp.
599
607
.10.1002/zamm.201200017
28.
Shah
,
R.
,
Khan
,
H.
,
Baleanu
,
D.
,
Kumam
,
P.
, and
Arif
,
M.
,
2020
, “
A Semi-Analytical Method to Solve Family of Kuramoto–Sivashinsky Equations
,”
J. Taibah Univ. Sci.
,
14
(
1
), pp.
402
411
.10.1080/16583655.2020.1741920
29.
Conte
,
R.
,
2003
, “
Exact Solutions of Nonlinear Partial Differential Equations by Singularity Analysis
,”
Direct and Inverse Methods in Nonlinear Evolution Equations
,
Springer
, Berlin.
30.
Rademacher
,
J. D.
, and
Wittenberg
,
R. W.
,
2006
, “
Viscous Shocks in the Destabilized Kuramoto-Sivashinsky Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
4
), pp.
336
347
.10.1115/1.2338656
31.
Taneco-Hernández
,
M. A.
,
Morales-Delgado
,
V. F.
, and
Gómez-Aguilar
,
J. F.
,
2019
, “
Fractional Kuramoto–Sivashinsky Equation With Power Law and Stretched Mittag-Leffler Kernel
,”
Phys. A
,
527
, p.
121085
.10.1016/j.physa.2019.121085
32.
Nazari-Golshan
,
A.
,
2019
, “
Fractional Generalized Kuramoto-Sivashinsky Equation: Formulation and Solution
,”
Eur. Phys. J. Plus
,
134
(
11
), p.
565
.10.1140/epjp/i2019-12948-7
33.
Sahoo
,
S.
, and
Ray
,
S. S.
,
2015
, “
New Approach to Find Exact Solutions of Time-Fractional Kuramoto–Sivashinsky Equation
,”
Phys. A
,
434
, pp.
240
245
.10.1016/j.physa.2015.04.018
34.
Sepehrian
,
B.
, and
Lashani
,
M.
,
2008
, “
A Numerical Solution of the Burgers Equation Using Quintic B-Splines
,”
Proceedings of the World Congress on Engineering
, London, July 2–4, pp.
2
4
.
35.
Dağ
,
İ.
,
Saka
,
B.
, and
Irk
,
D.
,
2006
, “
Galerkin Method for the Numerical Solution of the RLW Equation Using Quintic B-Splines
,”
J. Comput. Appl. Math.
,
190
(
1–2
), pp.
532
547
.10.1016/j.cam.2005.04.026
36.
Zaki
,
S.
,
2000
, “
A Quintic B-Spline Finite Elements Scheme for the KdVB Equation
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
1–3
), pp.
121
134
.10.1016/S0045-7825(99)00142-5
37.
Mittal
,
R.
, and
Arora
,
G.
,
2010
, “
Quintic B-Spline Collocation Method for Numerical Solution of the Kuramoto–Sivashinsky Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
10
), pp.
2798
2808
.10.1016/j.cnsns.2009.11.012
38.
Hall
,
C. A.
,
1968
, “
On Error Bounds for Spline Interpolation
,”
J. Approximation Theory
,
1
(
2
), pp.
209
218
.10.1016/0021-9045(68)90025-7
You do not currently have access to this content.