Abstract

We study nonreciprocity in a passive linear waveguide augmented with a local asymmetric, dissipative, and strongly nonlinear gate. Strong coupling between the constituent oscillators of the waveguide is assumed, resulting in broadband capacity for wave transmission. The local nonlinearity and asymmetry at the gate can yield strong global nonreciprocal acoustics, in the sense of drastically different acoustical responses depending on which side of the waveguide a harmonic excitation is applied. Two types of highly nonreciprocal responses are observed: (i) Monochromatic responses without frequency distortion compared to the applied harmonic excitation, and (ii) strongly modulated responses (SMRs) with strong frequency distortion. The complexification averaging (CX-A) method is applied to analytically predict the monochromatic solutions of this strongly nonlinear problem, and a stability analysis is performed to study the governing bifurcations. In addition, we build a machine learning framework where neural net (NN) simulators are trained to predict the performance measures of the gated waveguide in terms of certain transmissibility and nonreciprocity measures. The NN drastically reduces the required simulation time, enabling the determination of parameter ranges for desired performance in a high-dimensional parameter space. In the predicted desirable parameter space for nonreciprocity, the maximum transmissibility reaches 40%, and the transmitted energy varies by up to three orders of magnitude depending on the direction of wave transmission. The machine learning tools along with the analytical methods of this work can inform predictive designs of practical nonreciprocal waveguides and acoustic metamaterials that incorporate local nonlinear gates.

References

1.
Maxwell
,
J. C.
,
1864
, “
On the Calculation of the Equilibrium and Stiffness of Frames
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.10.1080/14786446408643668
2.
Achenbach
,
J.
,
2009
,
Reciprocity in Elastodynamics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Grinberg
,
I.
,
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
,
2018
, “
Acoustic Diode: Wave Non-Reciprocity in Nonlinearly Coupled Waveguides
,”
Wave Motion
,
83
, pp.
49
66
.10.1016/j.wavemoti.2018.08.005
4.
Darabi
,
A.
,
Fang
,
L.
,
Mojahed
,
A.
,
Fronk
,
M. D.
,
Vakakis
,
A. F.
, and
Leamy
,
M. J.
,
2019
, “
Broadband Passive Nonlinear Acoustic Diode
,”
Phys. Rev. B
,
99
(
21
), p.
214305
.10.1103/PhysRevB.99.214305
5.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.10.1088/1367-2630/18/8/083047
6.
Maznev
,
A. A.
,
Every
,
A. G.
, and
Wright
,
O. B.
,
2013
, “
Reciprocity in Reflection and Transmission: What is a ‘Phonon Diode’?
,”
Wave Motion
,
50
(
4
), pp.
776
784
.10.1016/j.wavemoti.2013.02.006
7.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), pp.
989
992
.10.1038/nmat2881
8.
Fu
,
C.
,
Wang
,
B.
,
Zhao
,
T.
, and
Chen
,
C. Q.
,
2018
, “
High Efficiency and Broadband Acoustic Diodes
,”
Appl. Phys. Lett.
,
112
(
5
), p.
051902
.10.1063/1.5020698
9.
Mousavi
,
S. H.
,
Khanikaev
,
A. B.
, and
Wang
,
Z.
,
2015
, “
Topologically Protected Elastic Waves in Phononic Metamaterials
,”
Nat. Commu.
,
6
(
1
), pp.
1
7
.10.1038/ncomms9682
10.
Tsakmakidis
,
K. L.
,
Shen
,
L.
,
Schulz
,
S. A.
,
Zheng
,
X.
,
Upham
,
J.
,
Deng
,
X.
,
Altug
,
H.
,
Vakakis
,
A. F.
, and
Boyd
,
R. W.
,
2017
, “
Breaking Lorentz Reciprocity to Overcome the Time-Bandwidth Limit in Physics and Engineering
,”
Science
,
356
(
6344
), pp.
1260
1264
.10.1126/science.aam6662
11.
Cummer
,
S.
,
2014
, “
Selecting the Direction of Sound Transmission
,”
Science
,
343
(
6170
), pp.
495
496
.10.1126/science.1249616
12.
Fleury
,
R.
,
Sounas
,
D.
,
Sieck
,
C.
,
Haberman
,
M.
, and
Alù
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.10.1126/science.1246957
13.
Fleury
,
R.
,
Sounas
,
D.
, and
Alù
,
A.
,
2015
, “
Subwavelength Ultrasonic Circulator Based on Spatiotemporal Modulation
,”
Phys. Rev. B
,
91
(
17
), p.
174306
.10.1103/PhysRevB.91.174306
14.
Coulais
,
C.
,
Sounas
,
D.
, and
Alù
,
A.
,
2017
, “
Static Non-Reciprocity in Mechanical Metamaterials
,”
Nature
,
542
(
7642
), pp.
461
464
.10.1038/nature21044
15.
Cui
,
J. G.
,
Yang
,
T.
, and
Chen
,
L. Q.
,
2018
, “
Frequency-Preserved Non-Reciprocal Acoustic Propagation in a Granular Chain
,”
Appl. Phys. Lett.
,
112
(
18
), p.
181904
.10.1063/1.5009975
16.
Deng
,
B.
,
Wang
,
P.
,
He
,
Q.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2018
, “
Metamaterials With Amplitude Gaps for Elastic Solitons
,”
Nat. Commun.
,
9
(
1
), pp.
1
8
.10.1038/s41467-018-05908-9
17.
Zhang
,
Q.
,
Li
,
W.
,
Lambros
,
J.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2020
, “
Pulse Transmission and Acoustic Non-Reciprocity in a Granular Channel With Symmetry-Breaking Clearances
,”
Granular Matter
,
22
(
1
), pp.
1
16
.10.1007/s10035-019-0982-7
18.
Wang
,
C.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2021
, “
Time Scale Disparity Yielding Acoustic Nonreciprocity in a Two-Dimensional Granular-Elastic Solid Interface With Asymmetry
,”
Phys. Rev. E
,
104
(
4
), p.
044906
.10.1103/PhysRevE.104.044906
19.
Nassar
,
H.
,
Behrooz
,
Y.
,
Romain
,
F.
,
Massimo
,
R.
,
Andrea
,
A.
,
Chiara
,
D.
,
Andrew
,
N. N.
,
Guoliang
,
H.
, and
Michael
,
H. R.
,
2020
, “
Nonreciprocity in Acoustic and Elastic Materials
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
667
685
.10.1038/s41578-020-0206-0
20.
Blanchard
,
A.
,
Sapsis
,
T. P.
, and
Vakakis
,
A. F.
,
2018
, “
Non-Reciprocity in Nonlinear Elastodynamics
,”
J. Sound Vib.
,
412
, pp.
326
335
.10.1016/j.jsv.2017.09.039
21.
Fang
,
L.
,
Darabi
,
A.
,
Mojahed
,
A.
,
Vakakis
,
A. F.
, and
Leamy
,
M. J.
,
2020
, “
Broadband Non-Reciprocity With Robust Signal Integrity in a Triangle-Shaped Nonlinear 1D Metamaterial
,”
Nonlinear Dyn.
,
100
(
1
), pp.
1
13
.10.1007/s11071-020-05520-x
22.
Mojahed
,
A.
,
Bunyan
,
J.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2019
, “
Tunable Acoustic Nonreciprocity in Strongly Nonlinear Waveguides With Asymmetry
,”
Phys. Rev. Appl.
,
12
(
3
), p.
034033
.10.1103/PhysRevApplied.12.034033
23.
Wang
,
C.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2020
, “
Irreversible Energy Transfer, Localization and Non-Reciprocity in Weakly Coupled, Nonlinear Lattices With Asymmetry
,”
Phys. D: Nonlinear Phenom.
,
402
, p.
132229
.10.1016/j.physd.2019.132229
24.
Wang
,
C.
,
Kanj
,
A.
,
Mojahed
,
A.
,
Tawfick
,
S.
, and
Vakakis
,
A.
,
2021
, “
Wave Redirection, Localization, and Non-Reciprocity in a Dissipative Nonlinear Lattice by Macroscopic Landau–Zener Tunneling: Theoretical Results
,”
J. Appl. Phys.
,
129
(
9
), p.
0951
.10.1063/5.0042275
25.
Mendizabal
,
A.
,
Márquez-Neila
,
P.
, and
Cotin
,
S.
,
2020
, “
Simulation of Hyperelastic Materials in Real-Time Using Deep Learning
,”
Med. Image Anal.
,
59
, p.
101569
.10.1016/j.media.2019.101569
26.
Ladický
,
L.
,
Jeong
,
S.
,
Solenthaler
,
B.
,
Pollefeys
,
M.
, and
Gross
,
M.
,
2015
, “
Data-Driven Fluid Simulations Using Regression Forests
,”
ACM Trans. Graph.
,
34
(
6
), pp.
1
9
.10.1145/2816795.2818129
27.
Gonzalez
,
A. S.
,
Godwin
,
J.
,
Pfaff
,
T.
,
Ying
,
R.
,
Leskovec
,
J.
, and
Battaglia
,
P. W.
,
2020
, “
Learning to Simulate Complex Physics With Graph Networks
,”
International Conference on Machine Learning
, PMLR, pp. 8459--8468.
28.
Wang
,
C.
,
Mojahed
,
A.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2022
, “
Machine Learning Non-Reciprocity of a Linear Waveguide With a Local Nonlinear, Asymmetric Case: Weak Coupling
,”
J. Sound Vib.
,
537
, p.
117211
.10.1016/j.jsv.2022.117211
29.
Wang
,
C.
,
Kanj
,
A.
,
Mojahed
,
A.
,
Tawfick
,
S.
, and
Vakakis
,
A.
,
2020
, “
Experimental Landau-Zener Tunneling (LZT) for Wave Redirection in Nonlinear Waveguides
,”
Phys. Rev. Appl.
,
14
(
3
), p.
034053
.10.1103/PhysRevApplied.14.034053
30.
Kanj
,
A.
,
Wang
,
C.
,
Mojahed
,
A.
,
Vakakis
,
A.
, and
Tawfick
,
S.
,
2021
, “
Wave Redirection, Localization, and Non-Reciprocity in a Dissipative Nonlinear Lattice by Macroscopic Landau–Zener Tunneling: Experimental Results
,”
AIP Adv.
,
11
(
6
), p.
065328
.10.1063/5.0047806
31.
Manevitch
,
L. I.
,
2001
, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables
,”
Nonlinear Dyn.
,
25
(
1/3
), pp.
95
109
.10.1023/A:1012994430793
32.
Manevich
,
A.
, and
Manevitch
,
L. I.
,
2005
,
The Mechanics of Nonlinear Systems With Internal Resonances
,
Imperical College Press
,
London
.
33.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Phys. D: Nonlinear Phenom.
,
204
(
1–2
), pp.
41
69
.10.1016/j.physd.2005.03.014
34.
Andersen
,
D.
,
Starosvetsky
,
Y.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2012
, “
Dynamic Instabilities in Coupled Oscillators Induced by Geometrically Nonlinear Damping
,”
Nonlinear Dyn.
,
67
(
1
), pp.
807
827
.10.1007/s11071-011-0028-0
You do not currently have access to this content.