Abstract

Structural damping is often empirically rate-independent wherein the dissipative part of the stress depends on the history of deformation but not its rate of change. Hysteresis models are popular for rate-independent dissipation; and a popular hysteresis model is the Bouc-Wen model. If such hysteretic dissipation is incorporated in a refined finite element model, then the model involves the usual structural dynamics equations along with nonlinear nonsmooth ordinary differential equations for a large number of internal hysteretic states at Gauss points used within the virtual work calculation. For such systems, numerical integration is difficult due to both the distributed nonanalytic nonlinearity of hysteresis as well as large natural frequencies in the finite element model. Here, we offer two contributions. First, we present a simple semi-implicit integration approach where the structural part is handled implicitly based on the work of Piché, while the hysteretic part is handled explicitly. A cantilever beam example is solved in detail using high mesh refinement. Convergence is good for lower damping and a smoother hysteresis loop. For a less smooth hysteresis loop and/or higher damping, convergence is noted to be roughly linear on average. Encouragingly, the time-step needed for stability is much larger than the time period of the highest natural frequency of the structural model. Subsequently, data from several simulations conducted using the above semi-implicit method are used to construct reduced order models of the system, where the structural dynamics is projected onto a few modes and the number of hysteretic states is reduced significantly as well. Convergence studies of error against the number of retained hysteretic states show very good results.

References

1.
Kimball
,
A. L.
, and
Lovell
,
D. E.
,
1927
, “
Internal Friction in Solids
,”
Phys. Rev.
,
30
(
6
), pp.
948
959
.10.1103/PhysRev.30.948
2.
Muravskii
,
G. B.
,
2004
, “
On Frequency Independent Damping
,”
J. Sound Vib.
,
274
(
3–5
), pp.
653
668
.10.1016/j.jsv.2003.05.012
3.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2011
,
Numerical Methods for Engineers
, Vol.
1221
,
McGraw-Hill
,
New York
.
4.
Bouc
,
R.
,
1967
, “
Forced Vibrations of Mechanical Systems With Hysteresis
,”
Proceedings of the Fourth Conference on Nonlinear Oscillations
,
Prague, Czech Republic
.
5.
Wen
,
Y.-K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.10.1061/JMCEA3.0002106
6.
Visintin
,
A.
,
2013
,
Differential Models of Hysteresis
, Vol.
111
,
Springer Science and Business Media
, Berlin/Heidelberg.
7.
Hilber
,
H. M.
,
Hughes
,
T. J.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
8.
Piché
,
R.
,
1995
, “
An L-Stable Rosenbrock Method for Step-by-Step Time Integration in Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
126
(
3–4
), pp.
343
354
.10.1016/0045-7825(95)00823-J
9.
Vaiana
,
N.
,
Sessa
,
S.
,
Marmo
,
F.
, and
Rosati
,
L.
,
2019
, “
Nonlinear Dynamic Analysis of Hysteretic Mechanical Systems by Combining a Novel Rate-Independent Model and an Explicit Time Integration Method
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2879
2901
.10.1007/s11071-019-05022-5
10.
MATLAB
,
2010
,
Version 7.10.0 (R2010a)
,
The MathWorks Inc
.,
Natick, MA
.
11.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.10.1061/JMCEA3.0000098
12.
Chang
,
S. Y.
,
2010
, “
A New Family of Explicit Methods for Linear Structural Dynamics
,”
Comput. Struct.
,
88
(
11–12
), pp.
755
772
.10.1016/j.compstruc.2010.03.002
13.
Abaqus
,
G.
,
2011
,
Abaqus 6.11, Dassault Systemes Simulia Corporation
,
Providence
,
RI
.
14.
Lee
,
T. Y.
,
Chung
,
K. J.
, and
Chang
,
H.
,
2017
, “
A New Implicit Dynamic Finite Element Analysis Procedure With Damping Included
,”
Eng. Struct.
,
147
(), pp.
530
544
.10.1016/j.engstruct.2017.06.006
15.
Holmes
,
P. J.
,
Lumley
,
J. L.
,
Berkooz
,
G.
,
Mattingly
,
J. C.
, and
Wittenberg
,
R. W.
,
1997
, “
Low-Dimensional Models of Coherent Structures in Turbulence
,”
Phys. Rep.
,
287
(
4
), pp.
337
384
.10.1016/S0370-1573(97)00017-3
16.
Bathe
,
K. J.
,
2007
, “
Conserving Energy and Momentum in Nonlinear Dynamics: A Simple Implicit Time Integration Scheme
,”
Comput. Struct.
,
85
(
7–8
), pp.
437
445
.10.1016/j.compstruc.2006.09.004
17.
Triantafyllou
,
S. P.
, and
Koumousis
,
V. K.
,
2014
, “
Hysteretic Finite Elements for the Nonlinear Static and Dynamic Analysis of Structures
,”
J. Eng. Mech.
,
140
(
6
), p.
04014025
.10.1061/(ASCE)EM.1943-7889.0000699
18.
Mosqueda
,
G.
, and
Ahmadizadeh
,
M.
,
2007
, “
Combined Implicit or Explicit Integration Steps for Hybrid Simulation
,”
Earthquake Eng. Struct. Dyn.
,
36
(
15
), pp.
2325
2343
.10.1002/eqe.731
19.
Mosqueda
,
G.
, and
Ahmadizadeh
,
M.
,
2011
, “
Iterative Implicit Integration Procedure for Hybrid Simulation of Large Nonlinear Structures
,”
Earthquake Eng. Struct. Dyn.
,
40
(
9
), pp.
945
960
.10.1002/eqe.1066
20.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.10.2514/3.2874
21.
Irons
,
B.
,
1965
, “
Structural Eigenvalue Problems-Elimination of Unwanted Variables
,”
AIAA J.
,
3
(
5
), pp.
961
962
.10.2514/3.3027
22.
Rouleau
,
L.
,
Deü
,
J. F.
, and
Legay
,
A.
,
2017
, “
A Comparison of Model Reduction Techniques Based on Modal Projection for Structures With Frequency-Dependent Damping
,”
Mech. Syst. Signal Process.
,
90
, pp.
110
125
.10.1016/j.ymssp.2016.12.013
23.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2013
,
Matrix Computations
, 4th ed.,
John Hopkins University Press
,
Baltimore, MD
.
24.
Stringer
,
D. B.
,
Sheth
,
P. N.
, and
Allaire
,
P. E.
,
2011
, “
Modal Reduction of Geared Rotor Systems With General Damping and Gyroscopic Effects
,”
J. Vib. Control
,
17
(
7
), pp.
975
987
.10.1177/1077546310372848
25.
Samantaray
,
A. K.
,
2009
, “
Steady-State Dynamics of a Non-Ideal Rotor With Internal Damping and Gyroscopic Effects
,”
Nonlinear Dyn.
,
56
(
4
), pp.
443
451
.10.1007/s11071-008-9413-8
26.
Bhattacharyya
,
S.
, and
Cusumano
,
J. P.
,
2021
, “
An Energy Closure Criterion for Model Reduction of a Kicked Euler-Bernoulli Beam
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041001
.10.1115/1.4048663
27.
Bhattacharyya
,
S.
, and
Cusumano
,
J. P.
,
2022
, “
Experimental Implementation of Energy Closure Analysis for Reduced Order Modeling
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
30
.10.1115/1.4054295
28.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
29.
Sengupta
,
T. K.
,
Haider
,
S. I.
,
Parvathi
,
M. K.
, and
Pallavi
,
G.
,
2015
, “
Enstrophy-Based Proper Orthogonal Decomposition for Reduced-Order Modeling of Flow Past a Cylinder
,”
Phys. Rev. E
,
91
(
4
), p.
043303
.10.1103/PhysRevE.91.043303
30.
Clark
,
S. T.
,
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Thomas
,
J. P.
,
2015
, “
Developing a Reduced-Order Model of Nonsynchronous Vibration in Turbomachinery Using Proper-Orthogonal Decomposition Methods
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052501
.10.1115/1.4028675
31.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
32.
Wanner
,
G.
, and
Hairer
,
E.
,
1996
,
Solving Ordinary Differential Equations II
, Vol.
375
,
Springer
,
Berlin, Heidelberg
.
33.
Maiti
,
S.
,
Bandyopadhyay
,
R.
, and
Chatterjee
,
A.
,
2018
, “
Vibrations of an Euler-Bernoulli Beam With Hysteretic Damping Arising From Dispersed Frictional Microcracks
,”
J. Sound Vib.
,
412
, pp.
287
308
.10.1016/j.jsv.2017.09.025
34.
Orban
,
F.
,
2011
, “
Damping of Materials and Members in Structures
,”
J. Phys.: Conf. Ser.
,
268
(
1
), p. 012022.10.1088/1742-6596/268/1/012022
35.
Bhattacharjee
,
A.
, and
Chatterjee
,
A.
,
2013
, “
Dissipation in the Bouc-Wen Model: Small Amplitude, Large Amplitude and Two-Frequency Forcing
,”
J. Sound Vib.
,
332
(
7
), pp.
1807
1819
.10.1016/j.jsv.2012.10.026
You do not currently have access to this content.