Abstract

The application of servocontrolled mechanical-bearing-based precision motion stages (MBMS) is well-established in advanced manufacturing, semiconductor industries, and metrological applications. Nevertheless, the performance of the motion stage is plagued by self-excited friction-induced vibrations. Recently, a passive mechanical friction isolator (FI) has been introduced to reduce the adverse impact of friction in MBMS, and accordingly, the dynamics of MBMS with FI were analyzed in the previous works. However, in the previous works, the nonlinear dynamics components of FI were not considered for the dynamical analysis of MBMS. This work presents a comprehensive, thorough analysis of an MBMS with a nonlinear FI. A servocontrolled MBMS with a nonlinear FI is modeled as a two DOF spring-mass-damper lumped parameter system. The linear stability analysis in the parametric space of reference velocity signal and differential gain reveals that including nonlinearity in FI significantly increases the local stability of the system's fixed-points. This further allows the implementation of larger differential gains in the servocontrolled motion stage. Furthermore, we perform a nonlinear analysis of the system and observe the existence of sub and supercritical Hopf bifurcation with or without any nonlinearity in the friction isolator. However, the region of sub and supercritical Hopf bifurcation on stability curves depends on the nonlinearity in FI. These observations are further verified by a detailed numerical bifurcation, which reveals the existence of nonlinear attractors in the system.

References

1.
Kim
,
W.-J.
, and
Trumper
,
D. L.
,
1998
, “
High-Precision Magnetic Levitation Stage for Photolithography
,”
Precis. Eng.
,
22
(
2
), pp.
66
77
.10.1016/S0141-6359(98)00009-9
2.
Kim
,
W. J.
,
Verma
,
S.
, and
Shakir
,
H.
,
2007
, “
Design and Precision Construction of Novel Magneticlevitation-Based Multi-Axis Nanoscale Positioning Systems
,”
Precis. Eng.
,
31
(
4
), pp.
337
350
.10.1016/j.precisioneng.2007.02.001
3.
Salapaka
,
S. M.
, and
Salapaka
,
M. V.
,
2008
, “
Scanning Probe Microscopy
,”
IEEE Control Syst. Mag.
,
28
(
2
), pp.
65
83
.10.1109/MSC.2007.914688
4.
Sebastian
,
A.
,
Pantazi
,
A.
,
Moheimani
,
S. R.
,
Pozidis
,
H.
, and
Eleftheriou
,
E.
,
2008
, “
Achieving Subnanometer Precision in a Mems-Based Storage Device During Self-Servo Write Process
,”
IEEE Trans. Nanotechnol.
,
7
(
5
), pp.
586
595
.10.1109/TNANO.2008.926441
5.
Altintas
,
Y.
,
Verl
,
A.
,
Brecher
,
C.
,
Uriarte
,
L.
, and
Pritschow
,
G.
,
2011
, “
Machine Tool Feed Drives
,”
CIRP Annals
,
60
(
2
), pp.
779
796
.10.1016/j.cirp.2011.05.010
6.
Futami
,
S.
,
Furutani
,
A.
, and
Yoshida
,
S.
,
1990
, “
Nanometer Positioning and Its Microdynamics
,”
Nanotechnology
,
1
(
1
), pp.
31
37
.10.1088/0957-4484/1/1/006
7.
Kim
,
M.-S.
, and
Kim
,
J.-H.
,
2011
, “
Design of a Gain Scheduled Pid Controller for the Precision Stage in Lithography
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
993
1000
.10.1007/s12541-011-0132-6
8.
Liu
,
J. Y.
,
Yin
,
W. S.
, and
Zhu
,
Y.
,
2011
, “
Application of Adaptive Fuzzy Pid Controller to Nano-Scale Precision Motion Stage System
,”
Control Eng. China
,
18
(
2
), pp.
254
257
.
9.
Al-Bender
,
F.
, and
Swevers
,
J.
,
2008
, “
Characterization of Friction Force Dynamics
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
64
81
.
10.
Marques
,
F.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.
11.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
12.
Hensen
,
R. H.
,
Van de Molengraft
,
M. J. G.
, and
Steinbuch
,
M.
,
2003
, “
Friction Induced Hunting Limit Cycles: A Comparison Between the Lugre and Switch Friction Model
,”
Automatica
,
39
(
12
), pp.
2131
2137
.10.1016/S0005-1098(03)00234-6
13.
Maeda
,
Y.
, and
Iwasaki
,
M.
,
2013
, “
Rolling Friction Model-Based Analyses and Compensation for Slow Settling Response in Precise Positioning
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5841
5853
.10.1109/TIE.2012.2229676
14.
Dong
,
X.
,
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2017
, “
A Novel Approach for Mitigating the Effects of Pre-Rolling/Pre-Sliding Friction on the Settling Time of Rolling Bearing Nanopositioning Stages Using High Frequency Vibration
,”
Precis. Eng.
,
47
, pp.
375
388
.10.1016/j.precisioneng.2016.09.011
15.
Dejima
,
S.
,
Gao
,
W.
,
Katakura
,
K.
,
Kiyono
,
S.
, and
Tomita
,
Y.
,
2005
, “
Dynamic Modeling, Controller Design and Experimental Validation of a Planar Motion Stage for Precision Positioning
,”
Precis. Eng.
,
29
(
3
), pp.
263
271
.10.1016/j.precisioneng.2004.11.005
16.
Yao
,
J.
,
Deng
,
W.
, and
Jiao
,
Z.
,
2015
, “
Adaptive Control of Hydraulic Actuators With Lugre Model-Based Friction Compensation
,”
IEEE Trans. Ind. Electron.
,
62
(
10
), pp.
6469
6477
.10.1109/TIE.2015.2423660
17.
Wang
,
X.
, and
Wang
,
S.
,
2012
, “
High Performance Adaptive Control of Mechanical Servo System With Lugre Friction Model: Identification and Compensation
,”
J. Dyn. Syst., Meas., Control
,
134
(
1
), p.
011021
.10.1115/1.4004785
18.
Barreto S
,
J. C. L.
,
Conceicao
,
A. G. S.
,
Dorea
,
C. E. T.
,
Martinez
,
L.
, and
de Pieri
,
E. R.
,
2014
, “
Design and Implementation of Model-Predictive Control With Friction Compensation on an Omnidirectional Mobile Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
467
476
.10.1109/TMECH.2013.2243161
19.
Dong
,
X.
,
Liu
,
X.
,
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2017
, “
Simple and Robust Feedforward Compensation of Quadrant Glitches Using a Compliant Joint
,”
CIRP Ann.
,
66
(
1
), pp.
353
356
.10.1016/j.cirp.2017.04.048
20.
Dong
,
X.
, and
Okwudire
,
C. E.
,
2018
, “
An Experimental Investigation of the Effects of the Compliant Joint Method on Feedback Compensation of Pre-Sliding/Pre-Rolling Friction
,”
Precis. Eng.
,
54
, pp.
81
90
.10.1016/j.precisioneng.2018.05.004
21.
Dong
,
X.
,
Okwudire
,
C.
,
Wang
,
J.
, and
Barry
,
O.
,
2019
, “
On the Friction Isolator for Precision Motion Control and Its Dynamics
,”
ASME
Paper No. DETC2019-98354.
22.
Gupta
,
S. K.
,
Wang
,
J.
, and
Barry
,
O. R.
,
2020
, “
Nonlinear Vibration Analysis of a Servo Controlled Precision Motion Stage With Friction Isolator
,”
Int. J. Non-Linear Mech.
,
126
, p.
103554
.10.1016/j.ijnonlinmec.2020.103554
23.
Canudas De Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
24.
Johanastrom
,
K.
, and
Canudas-De-Wit
,
C.
,
2008
, “
Revisiting the Lugre Friction Model
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
101
114
.10.1109/MCS.2008.929425
25.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.10.1007/s11071-015-2485-3
26.
Marques
,
F.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
, and
Lankarani
,
H. M.
, 2019, “
Modeling and Analysis of Friction Including Rolling Effects in Multibody Dynamics: A Review
,”
Multibody Syst. Dyn.
,
45
(
2
), pp.
223
244
.10.1007/s11044-018-09640-6
27.
Saha
,
A.
, and
Wahi
,
P.
,
2014
, “
An Analytical Study of Time-Delayed Control of Friction-Induced Vibrations in a System With a Dynamic Friction Model
,”
Int. J. Non-Linear Mech.
,
63
, pp.
60
70
.10.1016/j.ijnonlinmec.2014.03.012
28.
Saha
,
A.
,
2013
, “
Analysis and Control of Friction-Induced Vibrations by Time-Delayed Feedback
,” Ph.D. thesis,
Indian Institute of Technology
,
Kanpur, India
.
29.
Habib
,
G.
,
Detroux
,
T.
,
Viguie
,
R.
, and
Kerschen
,
G.
,
2015
, “
Nonlinear Generalization of Den Hartog's Equal-Peak Method
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
17
28
.
30.
Habib
,
G.
, and
Kerschen
,
G.
,
2016
, “
A Principle of Similarity for Nonlinear Vibration Absorbers
,”
Phys. D: Nonlinear Phenom.
,
332
, pp.
1
8
.10.1016/j.physd.2016.06.001
31.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1992
, “
Cyclic Motions Near a Hopf Bifurcation of a Four-Dimensional System
,”
Nonlinear Dyn.
,
3
(
1
), pp.
19
39
.10.1007/BF00045469
32.
Wang
,
J.
,
Dong
,
X.
,
Barry
,
O. R.
, and
Okwudire
,
C.
,
2019
, “Friction-Induced Instability and Vibration in a Precision Motion Stage With a Friction Isolator,”
J. Vib. Control
, 28(15–16), pp. 1879–1893.10.1177/1077546321999510
33.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2008
, “
Self-Interrupted Regenerative Metal Cutting in Turning
,”
Int. J. Non-Linear Mech.
,
43
(
2
), pp.
111
123
.10.1016/j.ijnonlinmec.2007.10.010
You do not currently have access to this content.