Abstract

Fundamental purpose of the current research article is to analyze the behavior of obtained results of time fractional nonlinear coupled Schrödinger-KdV equation, via implementing an effective analytical technique. In this work, Katugampola fractional derivative in Caputo type is used to model the problem. The coupled Schrödinger-KdV equation describes several kinds of wave propagation in plasma physics, like electromagnetic waves, dust-acoustic waves, and Langmuir waves. The fixed point theorem is used to present the existence and uniuness analysis of obtained solution of the discussed model. Numerical simulation and graphical behavior of the model are presented to show the reliability of the implemented analytical technique. A comparative analysis of exact and obtained approximate solutions is also presented.

References

1.
Rao
,
N. N.
,
1997
, “
Nonlinear Wave Modulations in Plasmas
,”
Pramana J. Phys.
,
49
(
1
), pp.
109
127
.10.1007/BF02856342
2.
Singh
,
S. V.
,
Rao
,
N. N.
, and
Shukla
,
P. K.
,
1998
, “
Nonlinearly Coupled Langmuir and Dust-Acoustic Waves in Dusty Plasma
,”
J. Plasma Phys.
,
60
(
3
), pp.
551
567
.10.1017/S002237789800717X
3.
Fan
,
E.
,
2002
, “
Multiple Travelling Wave Solutions of Nonlinear Evolution Equations Using a Unified Algebraic Method
,”
J. Phys. A
,
35
(
32
), pp.
6853
6872
.10.1088/0305-4470/35/32/306
4.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
, Vol.
198
,
Academic Press
,
New York
.
5.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley and Sons
,
New York
.
6.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos Solit. Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
7.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2020
, “
A New Analysis of Fractional Fish Farm Model Associated With Mittag-Leffler-Type Kernel
,”
Int. J. Biomath.
,
13
(
2
), p.
2050010
.10.1142/S1793524520500102
8.
Singh
,
J.
,
Jassim
,
H. K.
, and
Kumar
,
D.
,
2020
, “
An Efficient Computational Technique for Local Fractional Fokker Planck Equation
,”
Phys. A
,
555
, p.
124525
.10.1016/j.physa.2020.124525
9.
Singh
,
J.
,
Ahmadian
,
A.
,
Rathore
,
S.
,
Kumar
,
D.
,
Baleanu
,
D.
,
Salimi
,
M.
, and
Salahshour
,
S.
,
2021
, “
An Efficient Computational Approach for Local Fractional Poisson Equation in Fractal Media
,”
Numer. Methods Partial Differ. Equation
,
37
(
2
), pp.
1439
1448
.10.1002/num.22589
10.
Goswami
,
A.
,
Sushila
,
Singh
,
J.
, and
Kumar
,
D.
,
2020
, “
Numerical Computation of Fractional Kersten-Krasil'shchik Coupled KdV-mKdV System Occurring in Multi-Component Plasmas
,”
AIMS Math.
,
5
(
3
), pp.
2346
2368
.10.3934/math.2020155
11.
Yavuz
,
M.
,
Sulaiman
,
T. A.
,
Yusuf
,
A.
, and
Abdeljawad
,
T.
,
2021
, “
The Schrödinger-KdV Equation of Fractional Order With Mittag-Leffler Non-Singular Kernel
,”
Alexandria Eng. J.
,
60
(
2
), pp.
2715
2724
.10.1016/j.aej.2021.01.009
12.
Kucukarslan
,
S.
,
2009
, “
Homotopy Perturbation Method for Coupled Schrödinger-KdV Equation
,”
Nonlinear Anal.: Real World Appl.
,
10
(
4
), pp.
2264
2271
.10.1016/j.nonrwa.2008.04.008
13.
Doosthoseini
,
A.
, and
Shahmohamadi
,
H.
,
2010
, “
Variational Iteration Method for Solving Coupled Schrödinger-KdV Equation
,”
Appl. Math. Sci.
,
4
(
17
), pp.
823
837
.
14.
Safavi
,
M.
,
2018
, “
Numerical Solution of Coupled Schrödinger-KdV Equation Via Modified Variational Iteration algorithm-II
,”
SeMA J.
, 75(
3
), pp.
499
516
.10.1007/s40324-018-0147-3
15.
Siahdareh
,
A. A.
,
Izady
,
P.
, and
Zand
,
A.
,
2014
, “
A New Algorithm for Solving Coupled Schrödinger KdV Equation: An Application of the Fourier Transform Adomian Decomposition Method
,”
Adv. Stud. Theory Phys.
,
8
(
8
), pp.
357
364
.10.12988/astp.2014.312146
16.
Ray
,
S. S.
,
2015
, “
On the Soliton Solution and Jacobi Doubly Periodic Solution of the Fractional Coupled Schrödinger-KdV Equation by a Novel Approach
,”
IJNSNS
,
16
(
2
), pp.
79
95
.10.1515/ijnsns-2014-0050
17.
Sahoo
,
S.
, and
Ray
,
S. S.
,
2004
, “
The New Exact Solutions of Variant Types of Time Fractional Coupled Schrödinger Equation in Plasma Physics
,”
J. Appl. Anal. Comput.
,
7
(
3
), pp.
824
840
.
18.
Ray
,
S. S.
,
2018
, “
The Time-Splitting Fourier Spectral Method for Riesz Fractional Coupled Schrödinger-KdV Equation in Plasma Physics
,”
Mod. Phys. Lett. B
,
32
(
28
), p.
1850341
.10.1142/S0217984918503414
19.
Qing
,
L. Y.
,
Jun
,
C. R.
, and
Xia
,
G. H.
,
2013
, “
An Element-Free Galerkin (EFG) Method for Numerical Solution of the Coupled Schrödinger-KdV Equations
,”
Chin. Phys. B
,
22
(
10
), p.
100204
. 10.1088/1674-1056/22/10/100204
20.
Singh
,
J.
, and
Gupta
,
A.
,
2022
, “
Computational Analysis of Fractional Modified Degasperis-Procesi Equation With Caputo-Katugampola Derivative
,”
AIMS Math.
,
8
(
1
), pp.
194
212
.10.3934/math.2023009
21.
Singh
,
J.
,
Kumar
,
D.
, and
Swroop
,
R.
,
2016
, “
Numerical Solution of Time- and Space-Fractional Coupled Burgers Equations via Homotopy Algorithm
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1753
1763
.
22.
El Tawil
,
M. A.
, and
Huseen
,
S. N.
,
2012
, “
The q-Homotopy Analysis Method (q-HAM
),”
Int. J. Appl. Math. Mech.
,
8
(
15
), pp.
51
75
.https://www.researchgate.net/publication/281570825_The_q-homotopy_analysis_method_q-HAM#:~:text=In%20this%20paper%2C%20a%20more,increased%20when%20using%20q%2DHAM
23.
Zafar
,
R.
,
Ur-Rehman
,
M.
, and
Shams
,
M.
,
2020
, “
On Caputo Modification of Hadamard Type Fractional Derivative and Fractional Taylor Series
,”
Adv. Differ. Equation
,
2020
(
1
), p.
219
.10.1186/s13662-020-02658-1
24.
Katugampola
,
U. N.
,
2011
, “
New Approach to a Generalized Fractional Integral
,”
Appl. Math. Comput.
,
218
(
3
), pp.
860
865
.10.1016/j.amc.2011.03.062
25.
Katugampola
,
U. N.
,
2014
, “
A New Approach to Generalized Fractional Derivatives
,”
Bull. Math. Anal. Appl.
,
6
(
4
), pp.
1
15
.
26.
Almeida
,
R.
,
Malinowska
,
A. B.
, and
Odzijewicz
,
T.
,
2016
, “
Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
11
, p.
061017
.10.1115/1.4034432
27.
Jarad
,
F.
, and
Abdeljawad
,
T.
,
2020
, “
Generalized Fractional Derivatives and Laplace Transform
,”
Discrete Contin. Dyn. Syst. Ser. S
,
13
(
3
), pp.
709
722
.10.3934/dcdss.2020039
28.
Jarad
,
F.
, and
Abdeljawad
,
T.
,
2018
, “
A Modified Laplace Transform for Certain Generalized Fractional Operators
,”
Results Nonlinear Anal.
,
1
(
2
), pp.
88
98
.https://dergipark.org.tr/tr/download/article-file/527716
29.
Thanompolkrang
,
S.
,
Sawangtong
,
W.
, and
Sawangtong
,
P.
,
2021
, “
Application of the Generalized Laplace Homotopy Perturbation Method to the Time-Fractional Black-Scholes Equations Based on the Katugampola Fractional Derivative in Caputo Type
,”
Computation
,
9
(
3
), p.
33
.10.3390/computation9030033
30.
Odibat
,
Z.
, and
Bataineh
,
S. A.
,
2015
, “
An Adaptation of Homotopy Analysis Method for Reliable Treatment of Strongly Nonlinear Problems
,”
Math. Method. Appl. Sci.
,
38
(
5
), pp.
991
1000
.10.1002/mma.3136
31.
Prakasha
,
D. G.
,
Malagi
,
N. S.
, and
Veeresha
,
P.
,
2020
, “
New Approach for Fractional Schrödinger-Boussinesq Equations With Mittag-Leffler Kernel
,”
Math. Methods Appl. Sci.
,
43
(
17
), pp.
9654
9670
.10.1002/mma.6635
32.
Basti
,
B.
,
Arioua
,
Y.
, and
Benhamidouche
,
N.
,
2019
, “
Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Differential Equations
,”
J. Math. Appl.
,
42
, pp.
35
61
.10.7862/rf.2019.3
You do not currently have access to this content.