Issue Section:
Research Papers
Abstract
In this paper, we present a Riemannian geometric derivation of the governing equations of motion of nonholonomic dynamic systems. A geometric form of the work-energy principle is first derived. The geometric form can be realized in appropriate generalized quantities, and the independent equations of motion can be obtained if the subspace of generalized speeds allowable by nonholonomic constraints can be determined. We provide a geometric perspective of the governing equations of motion and demonstrate its effectiveness in studying dynamic systems subjected to nonholonomic constraints.
Issue Section:
Research Papers
References
1.
Desloge
, E. A.
, 1986
, “A Comparison of Kane's Equations of Motion and the Gibbs-Appell Equations of Motion
,” Am. J. Phys.
, 54
(5
), pp. 470
–472
.10.1119/1.145662.
Gibbs
, J. W.
, 1879
, “On the Fundamental Formulas of Dynamics
,” Am. J. Math.
, 2
(1
), pp. 49
–64
.10.2307/23691963.
Hamel
, P. G.
, 1949
, Theoretiche Mechanik
, Springer-Verlag
, Berlin, Germany
.4.
Honein
, T. E.
, and
O'Reilly
, O. M.
, 2021
, “The Geometry of Equations of Motion: Particles in Equivalent Universes
,” Nonlinear Dyn.
, 104
(4
), pp. 2979
–2994
.10.1007/s11071-021-06565-25.
Huston
, R. L.
, 1987
, “On the Equivalence of Kane's Equations and Gibbs' Equations for Multibody Dynamics Formulation
,” Mech. Res. Commun.
, 14
(2
), pp. 123
–131
.10.1016/0093-6413(87)90029-26.
Huston
, R. L.
, 1990
, Multibody Dynamics
, Butterworth-Heinemann
, Stoneham, MA
.7.
Huston
, R. L.
, 1991
, “Multibody Dynamics – Modeling and Analysis Methods
,” ASME Appl. Mech. Rev.
, 44
(3
), pp. 109
–117
.10.1115/1.31194968.
Huston
, R. L.
, 1999
, “Constraint Forces and Undetermined Multipliers in Constrained Multibody Systems
,” Multibody Syst. Dyn.
, 3
(4
), pp. 381
–389
.10.1023/A:10098685003119.
Huston
, R. L.
,
Passerello
, C. E.
, and
Harlow
, M. W.
, 1978
, “Dynamics of Multi Rigid-Body Systems
,” ASME J. Appl. Mech.
, 45
(4
), pp. 889
–894
.10.1115/1.342443710.
Huston
, R. L.
, and
Passerello
, C. E.
, 1980
, “Multibody Structural Dynamics Including Translation Between the Bodies
,” Comput. Struct.
, 12
(5
), pp. 713
–720
.10.1016/0045-7949(80)90173-X11.
Kane
, T. R.
, 1961
, “Dynamics of Nonholonomic Systems
,” ASME J. Appl. Mech.
, 28
(4
), pp. 574
–578
.10.1115/1.364178612.
Kane
, T. R.
, 1983
, “Formulation of Dynamical Equations of Motion
,” Am. J. Phys.
, 51
(11
), pp. 974
–977
.10.1119/1.1345213.
Kane
, T. R.
, and
Levinson
, D. A.
, 1980
, “Formulation of Equations of Motion for Complex Spacecraft
,” J. Guid. Control
, 3
(2
), pp. 99
–112
.10.2514/3.5595614.
Kane
, T. R.
, and
Levinson
, D. A.
, 1985
, Dynamics: Theory and Applications
, McGraw-Hill
, New York, NY
.15.
Likins
, P. W.
, 1975
, “Quasicoordinate Equations for Flexible Spacecraft
,” AIAA J.
, 13
(4
), pp. 524
–526
.10.2514/3.4974516.
Liu
, C. Q.
, and
Huston
, R. L.
, 2008
, “Another Form of Equations of Motion for Constrained Multibody Systems
,” Nonlinear Dyn.
, 51
(3
), pp. 465
–475
.10.1007/s11071-007-9225-217.
Liu
, X.
, 2008
, “A Lie Group Formulation of Kane's Equations for Multibody Systems
,” Multibody Syst. Dyn.
, 20
(1
), pp. 29
–49
.10.1007/s11044-008-9104-818.
Liu
, X.
, 2011
, “On the Governing Equations of Motion of Nonholonomic Systems on Riemannian Manifolds
,” J. Math. Sci.
, 177
(3
), pp. 411
–418
.10.1007/s10958-011-0467-719.
Liu
, X.
,
Huston
, R. L.
, and
Liu
, C. Q.
, 2011
, “The D'Alembert–Lagrange Equation Exploited on a Riemannian Manifold
,” Multibody Syst. Dyn.
, 25
(4
), pp. 411
–427
.10.1007/s11044-010-9231-x20.
Mitiguy
, P. C.
, and
Kane
, T. R.
, 1996
, “Motion Variables Leading to Efficient Equations of Motion
,” Int. J. Rob. Res.
, 15
(5
), pp. 522
–532
.10.1177/02783649960150050721.
Niemark
, J. I.
, and
Fufaev
, N. A.
, 1972
, Dynamics of Nonholonomic Systems
, American Mathematical Society
, Providence, RI
.22.
Papastavridis
, J. G.
, 1998
, “A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics
,” ASME Appl. Mech. Rev.
, 51
(4
), pp. 239
–265
.10.1115/1.309900323.
Parsa
, K.
, 2007
, “The Lagrangian Derivation of Kane's Equations
,” Trans. Can. Soc. Mech. Eng.
, 31
(4
), pp. 407
–420
.10.1139/tcsme-2007-002924.
Passerello
, C. P.
, and
Huston
, R. L.
, 1973
, “Another Look at Nonholonomic Systems
,” ASME J. Appl. Mech.
, 40
(1
), pp. 101
–104
.10.1115/1.342290525.
Quinn
, R. D.
, 1990
, “Equations of Motion for Structures in Terms of Quasi-Coordinates
,” ASME J. Appl. Mech.
, 57
(3
), pp. 745
–749
.10.1115/1.289708626.
Roithmayr
, C. M.
, and
Hodges
, D. H.
, 2016
, Dynamics: Theory and Application of Kane's Method
, Cambridge University Press
, New York
.27.
Sonneville
, V.
, and
Brüls
, O.
, 2014
, “A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,” ASME J. Comput. Nonlinear Dyn.
, 9
(4
), p. 041002
.10.1115/1.402656928.
Storch
, J.
, and
Gates
, S.
, 1989
, “Motivating Kane's Method for Obtaining Equations of Motion for Dynamic Systems
,” J. Guid. Control, Dyn.
, 12
(4
), pp. 593
–595
.10.2514/3.2044829.
Townsend
, M. A.
, 1992
, “Kane's Equations, Lagrange's Equations, and Virtual Work
,” J. Guid. Control, Dyn.
, 15
(1
), pp. 277
–280
.10.2514/3.2083230.
Whittaker
, E. T.
, 1947
, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
, Cambridge University Press
, New York
.31.
Chern
, S. S.
,
Chen
, W. H.
, and
Lam
, K. S.
, 1999
, Lectures on Differential Geometry
, World Scientific
, Singapore
.Copyright © 2024 by Sandia National Laboratories (SNL)
You do not currently have access to this content.