Abstract

This work proposes a new quadrilateral shell element to analyze large deformations or rotations of membrane or shell structures. The element is an improvement of the previously proposed gradient-deficient quadrilateral elements. The proposed element adopts three techniques to enhance its universality and efficiency. First, an enriched field is added to make the element immune to in-plane mesh distortions. Second, local numerical curvilinear coordinates are used for curved surfaces where global curvilinear coordinates cannot be obtained analytically. Third, the slope vector of the element is obtained by cross-producting the two gradient vectors only on each node but interpolated inside the element to ensure continuity, especially for complex quadrilateral meshes. Additionally, this processing maintains the linear relationships between the shape functions and nodal coordinates, allowing the pre-integral of the elastic tensors. Several numerical examples show that this new element is universal for those irregularly curved surfaces and immune to mesh distortions. In addition, the efficiency is much higher compared to the traditional quadrilateral element.

References

1.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
2.
Shabana
,
A. A.
,
2023
, “
An Overview of the ANCF Approach, Justifications for Its Use, Implementation Issues, and Future Research Directions
,”
Multibody Syst. Dyn.
,
58
(
3–4
), pp.
433
477
.10.1007/s11044-023-09890-z
3.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
4.
Yuan
,
T.
,
Tang
,
L.
,
Liu
,
Z.
, and
Liu
,
J.
,
2021
, “
Nonlinear Dynamic Formulation for Flexible Origami-Based Deployable Structures Considering Self-Contact and Friction
,”
Nonlinear Dyn.
,
106
(
3
), pp.
1789
1822
.10.1007/s11071-021-06860-y
5.
Yuan
,
T.
,
Tang
,
L.
, and
Liu
,
J.
,
2023
, “
Dynamic Modeling and Analysis for Inflatable Mechanisms Considering Adhesion and Rolling Frictional Contact
,”
Mech. Mach. Theory
,
184
, p.
105295
.10.1016/j.mechmachtheory.2023.105295
6.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
7.
Zhang
,
Z.
,
Ren
,
W.
, and
Zhou
,
W.
,
2022
, “
Research Status and Prospect of Plate Elements in Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
236
(
3
), pp.
357
367
.10.1177/14644193221098866
8.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
,
9
(
3
), pp.
283
309
.10.1023/A:1022950912782
9.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
219
(
4
), pp.
345
355
.10.1243/146441905X50678
10.
Ren
,
H.
, and
Fan
,
W.
,
2023
, “
An Adaptive Triangular Element of Absolute Nodal Coordinate Formulation for Thin Plates and Membranes
,”
Thin-Walled Struct.
,
182
, p.
110257
.10.1016/j.tws.2022.110257
11.
Dmitrochenko
,
O. N.
, and
Yu Pogorelov
,
D.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
17
43
.10.1023/A:1024553708730
12.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
13.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
14.
Obrezkov
,
L. P.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2022
, “
Performance Review of Locking Alleviation Methods for Continuum Ancf Beam Elements
,”
Nonlinear Dyn.
,
109
(
2
), pp.
531
546
.10.1007/s11071-022-07518-z
15.
Mikkola
,
A. M.
, and
Matikainen
,
M. K.
,
2006
, “
Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dynam.
, 1(2), pp. 103–108.10.1115/1.1961870
16.
Matikainen
,
M. K.
,
Schwab
,
A. L.
, and
Mikkola
,
A. M.
,
2009
, “
Comparison of Two Moderately Thick Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Dyn.
, pp.
1
21
.http://bicycle.tudelft.nl/schwab/Publications/MatikainenSchwabMikkola2009.pdf
17.
Matikainen
,
M. K.
,
Mikkola
,
A.
, and
Schwab
,
A. L.
,
2009
, “
The Quadrilateral Fully-Parametrized Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
J. Struct. Mech.
,
42
(
3
), pp.
138
148
.http://rmseura.tkk.fi/rmlehti/2009/nro3/RakMek_42_3_2009_3.pdf
18.
Simo
,
J. C.
, and
Rifai
,
M. S.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
(
8
), pp.
1595
1638
.10.1002/nme.1620290802
19.
Dvorkin
,
E. N.
, and
Bathe
,
K.-J.
,
1984
, “
A Continuum Mechanics Based Four-Node Shell Element for General Non-Linear Analysis
,”
Eng. Comput.
,
1
(
1
), pp.
77
88
.10.1108/eb023562
20.
Bathe
,
K.-J.
, and
Dvorkin
,
E. N.
,
1986
, “
A Formulation of General Shell Elements–The Use of Mixed Interpolation of Tensorial Components
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
697
722
.10.1002/nme.1620220312
21.
Shabana
,
A. A.
,
Desai
,
C. J.
,
Grossi
,
E.
, and
Patel
,
M.
,
2020
, “
Generalization of the Strain-Split Method and Evaluation of the Nonlinear ANCF Finite Elements
,”
Acta Mech.
,
231
(
4
), pp.
1365
1376
.10.1007/s00707-019-02558-w
22.
Sanborn
,
G. G.
,
Choi
,
J.
, and
Choi
,
J. H.
,
2011
, “
Curve-Induced Distortion of Polynomial Space Curves, Flat-Mapped Extension Modeling, and Their Impact on ANCF Thin-Plate Finite Elements
,”
Multibody Syst. Dyn.
,
26
(
2
), pp.
191
211
.10.1007/s11044-011-9248-9
23.
Dmitrochenko
,
O. N.
,
Hussein
,
B. A.
, and
Shabana
,
A. A.
,
2009
, “
Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization
,”
ASME J. Comput. Nonlinear Dynam.
, 4(2), p.
021002
.10.1115/1.3079682
24.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
1
), pp.
34
51
.10.1177/2041306810392115
25.
Matikainen
,
M. K.
,
Valkeapää
,
A. I.
,
Mikkola
,
A. M.
, and
Schwab
,
A. L.
,
2014
, “
A Study of Moderately Thick Quadrilateral Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
309
338
.10.1007/s11044-013-9383-6
26.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V.-V.
, and
Mikkola
,
A.
,
2017
, “
Analysis of High-Order Quadrilateral Plate Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Adv. Mech. Eng.
,
9
(
6
), p.
168781401770506
.10.1177/1687814017705069
27.
Zhang
,
B.
,
Fan
,
W.
, and
Ren
,
H.
,
2023
, “
A Universal Quadrilateral Shell Element for the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
10
), p.
101001
.10.1115/1.4062630
28.
Hyldahl
,
P.
,
Mikkola
,
A. M.
,
Balling
,
O.
, and
Sopanen
,
J. T.
,
2014
, “
Behavior of Thin Rectangular ANCF Shell Elements in Various Mesh Configurations
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1277
1291
.10.1007/s11071-014-1514-y
29.
Yan
,
D.
,
Liu
,
C.
,
Tian
,
Q.
,
Zhang
,
K.
,
Liu
,
X. N.
, and
Hu
,
G. K.
,
2013
, “
A New Curved Gradient Deficient Shell Element of Absolute Nodal Coordinate Formulation for Modeling Thin Shell Structures
,”
Nonlinear Dyn.
,
74
(
1–2
), pp.
153
164
.10.1007/s11071-013-0955-z
30.
Yu-Qiu
,
L.
, and
Min-Feng
,
H.
,
1988
, “
A Generalized Conforming Isoparametric Element
,”
Appl. Math. Mech.
,
9
(
10
), pp.
929
936
.10.1007/BF02014599
31.
Ho
,
S.-P.
, and
Yeh
,
Y.-L.
,
2006
, “
The Use of 2D Enriched Elements With Bubble Functions for Finite Element Analysis
,”
Comput. Struct.
,
84
(
29–30
), pp.
2081
2091
.10.1016/j.compstruc.2006.04.008
32.
Wang
,
Y.
,
Yu
,
Z.
,
Lan
,
P.
, and
Lu
,
N.
,
2022
, “
Local Mesh Refinement and Coarsening Based on Analysis-Suitable T-Splines Surface and Its Application in Contact Problem
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
10
), p.
101007
.10.1115/1.4055142
33.
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2021
, “
Convergence Characteristics of Geometrically Accurate Spatial Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
011006
.10.1115/1.4048731
34.
Shabana
,
A. A.
, and
Mikkola
,
A. M.
,
2003
, “
Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
342
350
.10.1115/1.1564569
35.
Shabana
,
A. A.
, and
Maqueda
,
L. G.
,
2008
, “
Slope Discontinuities in the Finite Element Absolute Nodal Coordinate Formulation: Gradient Deficient Elements
,”
Multibody Syst. Dyn.
,
20
(
3
), pp.
239
249
.10.1007/s11044-008-9111-9
36.
Shabana
,
A. A.
,
2011
, “
General Method for Modeling Slope Discontinuities and t-Sections Using ANCF Gradient Deficient Finite Elements
,”
ASME J. Comput. Nonlinear Dynam.
, 6(2), p.
024502
.10.1115/1.4002339
37.
Chen
,
W.
,
Zheng
,
X.
,
Ke
,
J.
,
Lei
,
N.
,
Luo
,
Z.
, and
Gu
,
X.
,
2019
, “
Quadrilateral Mesh Generation i: Metric Based Method
,”
Comput. Methods Appl. Mech. Eng.
,
356
, pp.
652
668
.10.1016/j.cma.2019.07.023
38.
Lei
,
N.
,
Zheng
,
X.
,
Luo
,
Z.
,
Luo
,
F.
, and
Gu
,
X.
,
2020
, “
Quadrilateral Mesh Generation II: Meromorphic Quartic Differentials and Abel–Jacobi Condition
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
112980
.10.1016/j.cma.2020.112980
39.
Zheng
,
X.
,
Zhu
,
Y.
,
Chen
,
W.
,
Lei
,
N.
,
Luo
,
Z.
, and
Gu
,
X.
,
2021
, “
Quadrilateral Mesh Generation III: Optimizing Singularity Configuration Based on Abel–Jacobi Theory
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114146
.10.1016/j.cma.2021.114146
40.
Cen
,
S.
,
Chen
,
X.-M.
, and
Fu
,
X.-R.
,
2007
, “
Quadrilateral Membrane Element Family Formulated by the Quadrilateral Area Coordinate Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
41–44
), pp.
4337
4353
.10.1016/j.cma.2007.05.004
41.
Wilson
,
E. L.
,
Taylor
,
R. L.
,
Doherty
,
W. P.
, and
Ghaboussi
,
J.
,
1973
, “
Incompatible Displacement Models
,”
Numerical and Computer Methods in Structural Mechanics
,
Academic Press
, Cambridge, MA, pp.
43
57
.
42.
Taylor
,
M.
,
Serban
,
R.
, and
Negrut
,
D.
,
2023
, “
An Efficiency Comparison of Different ANCF Implementations
,”
Int. J. Non-Linear Mech.
,
149
, p.
104308
.10.1016/j.ijnonlinmec.2022.104308
43.
Xu
,
Q.
, and
Liu
,
J.
,
2022
, “
An Improved Dynamic Formulation for Nonlinear Response Analysis of Thin Soft Silicone Plates With Large Deflection
,”
Thin-Walled Struct.
,
176
, p.
109333
.10.1016/j.tws.2022.109333
44.
Ren
,
H.
, and
Yang
,
K.
,
2021
, “
A Referenced Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
51
(
3
), pp.
305
342
.10.1007/s11044-020-09750-0
45.
Yuan
,
T.
,
Fan
,
W.
, and
Ren
,
H.
,
2023
, “
A General Nonlinear Order-Reduction Method Based on the Referenced Nodal Coordinate Formulation for a Flexible Multibody System
,”
Mech. Mach. Theory
,
185
, p.
105290
.10.1016/j.mechmachtheory.2023.105290
You do not currently have access to this content.