This paper presents an overview of research and development efforts that are currently being devoted to integrate large deformation finite element formulations with flexible multibody system algorithms. The goal is to develop computer simulation capabilities for the analysis of physics and engineering models with significant details. The successful development of such new and integrated algorithms will also allow modeling and simulation of systems that cannot be solved using existing computer algorithms and codes. One of the main difficulties encountered in this integration process is attributed to the fact that the solution procedures used in finite element codes differ significantly from those used in general-purpose flexible multibody system codes. Finite element methods employ the corotational formulations that are often used with incremental solution procedures. Flexible multibody computer codes, on the other hand, do not, in general, use incremental solution procedures. Three approaches are currently being explored by academic institutions and the software industry. In the first approach, gluing algorithms that aim at performing successful simulations by establishing an interface between existing codes are used. Using different coordinates and synchronizing the time stepping are among several challenging problems that are encountered when gluing algorithms are used. In the second approach, multibody system capabilities are implemented in existing finite element algorithms that are based on large rotation vector formulations. For the most part, corotational formulations and incremental solution procedures are used in this case. In the third approach, a new large deformation finite element formulation that can be successfully implemented in flexible multibody system computer algorithms that employ nonincremental solution procedures is introduced. The approach that is now being developed in several institutions is based on the finite element absolute nodal coordinate formulation. Such a formulation can be systematically implemented in general-purpose flexible multibody system computer algorithms. Nonlinear constraint equations that describe mechanical joints between different bodies can be formulated in terms of the absolute coordinates in a straightforward manner. The coupling between the motion of rigid, flexible, and very flexible bodies can also be accurately described. The successful integration of large deformation finite element and multibody system algorithms will lead to a new generation of computer codes that can be systematical and efficiently used in the analysis of many engineering applications.

1.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
2.
Zienkiewicz
,
O. C.
, 1977,
The Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
3.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
Solid Mechanics
, (
The Finite Element Method
Vol.
2
) 5th ed.,
Butterworth-Heinemann
,
London
.
4.
Tseng
,
F. C.
, and
Hulbert
,
G. M.
, 2001, “
A Gluing Algorithm for Network-Distributed Dynamics Simulation
,”
Multibody Syst. Dyn.
1384-5640,
6
, pp.
377
396
.
5.
Wang
,
J. Z.
,
Ma
,
Z. D.
, and
Hulbert
,
G. M.
, 2003, “
A Gluing Algorithm for Distributed Simulation of Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
159
188
.
6.
Bauchau
,
O. A.
, 1998, “
Computational Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
2
), pp.
169
225
.
7.
Géradin
,
M.
, and
Cardona
,
A.
, 2001,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
8.
Shabana
,
A.
, 1996, “
Finite Element Incremental Approach and Exact Rigid Body Inertia
,”
ASME J. Mech. Des.
1050-0472,
118
(
2
), pp.
171
178
.
9.
Bayo
,
E.
,
García de Jalón
,
J.
, and
Serna
,
M. A.
, 1988, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
183
195
.
10.
Bayo
,
E.
, and
Ledesma
,
R.
, 1996, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
113
130
.
11.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Parts I and II
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
849
863
.
12.
Wehage
,
R. A.
, 1980, “
Generalized Coordinate Partitioning in Dynamic Analysis of Mechanical Systems
,” Ph.D. thesis, University of Iowa, Iowa.
13.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
0161-8458,
104
(
1
), pp.
247
255
.
14.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University Press
,
Cambridge, England
.
15.
Agrawal
,
O. P.
, and
Shabana
,
A. A.
, 1985, “
Dynamic Analysis of Multi-Body Systems Using Component Modes
,”
Comput. Struct.
0045-7949,
21
(
6
), pp.
1303
1312
.
16.
Farhat
,
C. H.
, and
Wilson
,
E.
, 1988, “
A Parallel Active Column Equation Solver
,”
Comput. Struct.
0045-7949,
28
, pp.
289
304
.
17.
Farhat
,
C. H.
, and
Roux
,
F. X.
, 1994, “
Implicit Parallel Processing in Structural Mechanics
,”
Comput. Mech. Adv.
0927-7951,
2
, pp.
1
124
.
18.
Farhat
,
C.
, and
Roux
,
F. X.
, 1991, “
A Method of Finite Element Tearing and Interconnecting and its Parallel Solution Algorithm
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
1205
1227
.
19.
Modak
,
S.
, and
Sotelino
,
E. D.
, 2000, “
Iterative Group Implicit Algorithm for Parallel Transient Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
4
), pp.
869
885
.
20.
Kim
,
S. S.
, 2002, “
A Subsystem Synthesis Method for an Efficient Vehicle Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
7
, pp.
189
207
.
21.
Anderson
,
K. S.
, and
Duan
,
S.
, 2000, “
Highly Parallelizable Low-Order Dynamics Simulation Algorithm for Multi-Rigid-Body Systems
,”
J. Guid. Control Dyn.
0731-5090,
23
(
2
), pp.
355
364
.
22.
Kübler
,
R.
, and
Schiehlen
,
W.
, 2000, “
Modular Simulation in Multibody System Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
4
, pp.
107
127
.
23.
Tseng
,
F. C.
,
Ma
,
Z. D.
, and
Hulbert
,
G. M.
, 2003, “
Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
439
472
.
24.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, England
.
25.
Spencer
,
A. J. M.
, 1980,
Continuum Mechanics
, Longman, London.
26.
Naghdi
,
P. M.
, 1972, “
The Theory of Shells and Plates
,”
Handbuch der Physik
,
Springer-Verlag
,
Berlin
, Vol.
6
, pp.
425
640
.
27.
Cesnik
,
C. E. S.
,
Hodges
,
D. H.
, and
Sutyrin
,
V. G.
, 1996, “
Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature Effects
,”
AIAA J.
0001-1452,
34
(
9
), pp.
1913
1920
.
28.
Stolarski
,
H.
,
Belytschko
,
T.
, and
Lee
,
S. H.
, 1995, “
A Review of Shell Finite Elements and Corotational Theories
,”
Comput. Mech. Adv.
0927-7951,
2
(
2
), pp.
125
212
.
29.
Kratzig
,
W. B.
, 1993, “
‘Best’ Transverse Shearing and Stretching Shell Theory for Nonlinear Finite Element Simulations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
103
(
1–2
), pp.
135
160
.
30.
Goldenweizer
,
A.
, 1961,
Theory of Thin Elastic Shells
,
Pergamon
,
Oxford, UK
.
31.
Libai
,
A.
, and
Simmonds
,
J. G.
, 1998,
The Nonlinear Theory of Elastic Shells
, 2nd ed.,
Cambridge University Press
,
Cambridge, England
.
32.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
Nikravesh
,
P. E.
,
Wehage
,
R. A.
, and
Kwon
,
O. K.
, 1985, “
Euler Parameters in Computational Dynamics and Kinematics. Part I and Part II
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
(
3
), pp.
358
369
.
34.
García de Jalón
,
J.
,
Unda
,
J.
,
Avello
,
A.
, and
Jiménez
,
J. M.
, 1987, “
Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
460
465
.
35.
Betsch
,
P.
, and
Steinmann
,
E.
, 2001, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
467
488
.
36.
Cardona
,
A.
, and
Géradin
,
M.
, 1988, “
A Beam Finite Element Non-Linear Theory With Finite Rotation
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2403
2438
.
37.
Betsch
,
P.
,
Menzel
,
A.
, and
Stein
,
E.
, 1998, “
On the Parametrization of Finite Rotations in Computational Mechanics. A Classification of Concepts With Application to Smooth Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
155
(
3–4
), pp.
273
305
.
38.
Kurdila
,
A.
,
Papastavridis
,
J. G.
, and
Kamat
,
M. P.
, 1990, “
Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems
,”
J. Guid. Control Dyn.
0731-5090,
13
(
1
), pp.
113
120
.
39.
Unda
,
J.
,
García de Jalón
,
J.
,
Losantos
,
F.
, and
Enparantza
,
R.
, 1987, “
A Comparative Study on Some Different Formulations of the Dynamics Equations of Constrained Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
466
474
.
40.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
282
292
.
41.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
371
375
.
42.
Cardona
,
A.
, and
Géradin
,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
0045-7949,
33
(
3
), pp.
801
820
.
43.
Farhat
,
C.
,
Crivelli
,
L.
, and
Géradin
,
M.
, 1995, “
Implicit Time Integration of a Class of Constrained Hybrid Formulations—Part I: Spectral Stability Theory
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
125
, pp.
71
107
.
44.
Hulbert
,
G. M.
, 2004, “
Computational Structural Dynamics
,” in
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
, eds., Vol.
2
, pp.
169
193
.
45.
Bauchau
,
O. A.
,
Damilano
,
G.
, and
Theron
,
N. J.
, 1995, “
Numerical Integration of Nonlinear Elastic Multi-Body Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
2727
2751
.
46.
Bottasso
,
C. L.
, and
Borri
,
M.
, 1997, “
Energy Preserving∕Decaying Schemes for Non-Linear Beam Dynamics Using the Helicoidal Approximation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
143
, pp.
393
415
.
47.
Simo
,
J. C.
, and
Tarnow
,
N.
, 1994, “
A New Energy and Momentum Conserving Algorithm for the Nonlinear Dynamics of Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
2527
2549
.
48.
Bauchau
,
O. A.
,
Choi
,
J. Y.
, and
Bottasso
,
C. L.
, 2002, “
On the Modeling of Shells in Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
8
(
4
), pp.
459
489
.
49.
Bottasso
,
C. L.
,
Borri
,
M.
, and
Trainelli
,
L.
, 2001, “
Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms—Part I: Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3669
3699
.
50.
Bottasso
,
C. L.
,
Borri
,
M.
, and
Trainelli
,
L.
, 2001, “
Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms—Part II: Numerical Schemes and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3701
3733
.
51.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2003, “
Robust Integration Schemes for Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
3–4
), pp.
395
420
.
52.
Cardona
,
A.
, and
Géradin
,
M.
, 1990, “
Modeling of a Hydraulic Actuator in Flexible Machine Dynamics Simulation
,”
Mech. Mach. Theory
0094-114X,
25
(
2
), pp.
193
207
.
53.
Cardona
,
A.
,
Géradin
,
M.
, and
Doan
,
D. B.
, 1991, “
Rigid and Flexible Joint Modelling in Multi-Body Dynamics Using Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
395
418
.
54.
Bauchau
,
O. A.
, and
Rodriguez
,
L.
, 2002, “
Modeling of Joints With Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
41
63
.
55.
Cardona
,
A.
, and
Géradin
,
M.
, 1992, “
A Superelement Formulation for Mechanism Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
100
, pp.
1
29
.
56.
Bauchau
,
O. A.
, and
Hodges
,
D. H.
, 1999, “
Analysis of Nonlinear Multi-Body Systems With Elastic Couplings
,”
Multibody Syst. Dyn.
1384-5640,
3
, pp.
168
188
.
57.
Bauchau
,
O. A.
, 1999, “
On the Modeling of Friction and Rolling in Flexible Multi-Body Systems
,”
Multibody Syst. Dyn.
1384-5640,
3
, pp.
209
239
.
58.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
, 2003, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
10
(
1
), pp.
17
43
.
59.
Garcia-Vallejo
,
D.
,
Escalona
,
J. L.
,
Mayo
,
J.
, and
Dominguez
,
J.
, 2003, “
Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates
,”
Nonlinear Dyn.
0924-090X,
34
(
1–2
), pp.
75
94
.
60.
Garcia-Vallejo
,
D.
,
Valverde
,
J.
, and
Dominguez
,
J.
, 2005, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
42
(
4
), pp.
347
369
.
61.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
109
130
.
62.
Mikkola
,
M. A.
, and
Matikainen
,
M. K.
, 2006, “
Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
2
), pp.
103
108
.
63.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
, 2005, “
Comparison of Three-Dimensional Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference
(DETC2005-85104),
Long Beach, CA
, Sept. 24–28, Paper. No. DETC2005-85104.
64.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
(
1–2
), pp.
53
74
.
65.
Takahashi
,
Y.
, and
Shimizu
,
N.
, 1999, “
Study on Elastic Forces of the Absolute Nodal Coordinate Formulation for Deformable Beams
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference
,
Las Vegas, NV
.
66.
Von Dombrowski
,
S.
, 2002, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
1384-5640,
8
(
4
), pp.
409
432
.
67.
Yoo
,
W. S.
,
Lee
,
J. H.
,
Park
,
S. J.
,
Sohn
,
J. H.
,
Pogorelov
,
D.
, and
Dimitrochenko
,
O.
, 2004, “
Large Deflection Analysis of a Thin Plate: Computer Simulation and Experiment
,”
Multibody Syst. Dyn.
1384-5640,
11
(
2
), pp.
185
208
.
68.
Shabana
,
A. A.
, 1998, “
A Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
(
3
), pp.
293
306
.
69.
Sugiyama
,
H.
,
Mikkola
,
A. M.
, and
Shabana
,
A. A.
, 2003, “
A Non-Incremental Nonlinear Finite Element Solution for Cable Problems
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
746
756
.
70.
Romero
,
I.
, 2006, “
A Study of Nonlinear Rod Models for Flexible Multibody Dynamics
,”
Proceedings of the Seventh World Congress on Computational Mechanics
,
Los Angeles, CA
, July 16–22.
71.
Huston
,
R. L.
, 1981, “
Multibody Dynamics Including the Effect of Flexibility and Compliance
,”
Comput. Struct.
0045-7949,
14
, pp.
443
451
.
You do not currently have access to this content.