Abstract

The automotive industry has been experiencing a significant transition toward electrified powertrains in recent years. A torsional model of a common type of electric vehicle (EV) drivetrains is proposed to demonstrate certain dynamic behaviors that are unique to such high-speed applications. This two-stage helical gear drive train is supported by three shafts and connects the electric motor to the vehicle axle. The gear mesh interfaces are modeled by periodically time-varying stiffnesses subjected to backlash and displacement excitations to represent gear tooth errors and modifications. In addition to these internal excitations, torque fluctuations caused by electric motor are included as the external excitations. Two different operating conditions are studied here: (i) steady-state response as the vehicle is operated under steady torque conditions and (ii) transient response during EV system transitions between the drive and regenerative (regen) braking modes of operation. The torsional model predictions are verified through comparisons to simulations from a deformable-body contact model. Parameter sensitivity studies are performed to demonstrate nonlinear behavior of a helical gear train caused by external torque fluctuations as well as the interactions between external and internal excitations. Finally, drivetrain structural modes are shown to respond to drive-regen transitions resulting in certain transient (vibro-impact) behavior with elevated dynamic mesh forces.

References

1.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1995
, “
Steady State Forced Response of a Mechanical Oscillator With Combined Parametric Excitation and Clearance Type Non-Linearity
,”
J. Sound Vib.
,
185
(
5
), pp.
743
765
.10.1006/jsvi.1995.0416
2.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1996
, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System With Clearance
,”
J. Sound Vib.
,
194
(
3
), pp.
317
336
.10.1006/jsvi.1996.0361
3.
Benatar
,
M.
,
Handschuh
,
M.
,
Kahraman
,
A.
, and
Talbot
,
D.
,
2019
, “
Static and Dynamic Transmission Error Measurements of Helical Gear Pairs With Various Tooth Modifications
,”
ASME J. Mech. Des.
,
141
(
10
), p.
103301
.10.1115/1.4043586
4.
Celikay
,
A.
,
Donmez
,
A.
, and
Kahraman
,
A.
,
2021
, “
An Experimental and Theoretical Study of Subharmonic Resonances of a Spur Gear Pair
,”
J. Sound Vib.
,
515
, p.
116421
.10.1016/j.jsv.2021.116421
5.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.10.1115/1.2787276
6.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1999
, “
Effect of Involute Tip Relief on Dynamic Response of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
313
315
.10.1115/1.2829460
7.
Parker
,
R. G.
,
Vijayakar
,
S.
, and
Imajo
,
T.
,
2000
, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
,”
J. Sound Vib.
,
237
(
3
), pp.
435
455
.10.1006/jsvi.2000.3067
8.
Cooley
,
C. G.
,
Parker
,
R. G.
, and
Vijayakar
,
S. M.
,
2011
, “
A Frequency Domain Finite Element Approach for Three-Dimensional Gear Dynamics
,”
ASME J. Vib. Acoust., Trans. ASME
,
133
(
4
), p.
041004
.10.1115/1.4003399
9.
Eritenel
,
T.
, and
Parker
,
R. G.
,
2012
, “
An Investigation of Tooth Mesh Nonlinearity and Partial Contact Loss in Gear Pairs Using a Lumped-Parameter Model
,”
Mech. Mach. Theory
,
56
, pp.
28
51
.10.1016/j.mechmachtheory.2012.05.002
10.
Baud
,
S.
, and
Velex
,
P.
,
2002
, “
Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-Experiments and Model Validation
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
334
346
.10.1115/1.1462044
11.
Velex
,
P.
, and
Maatar
,
M.
,
1996
, “
A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behaviour
,”
J. Sound Vib.
,
191
(
5
), pp.
629
660
.10.1006/jsvi.1996.0148
12.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-Varying Mesh Stiffness and Clearance Non-Linearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.10.1016/0022-460X(91)90527-Q
13.
Ma
,
Q.
, and
Kahraman
,
A.
,
2006
, “
Subharmonic Resonances of a Mechanical Oscillator With Periodically Time-Varying, Piecewise Non-Linear Stiffness
,”
J. Sound Vib.
,
294
(
3
), pp.
624
636
.10.1016/j.jsv.2005.11.026
14.
Kubur
,
M.
,
Kahraman
,
A.
,
Zini
,
D. M.
, and
Kienzle
,
K.
,
2004
, “
Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiment
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
398
406
.10.1115/1.1760561
15.
Kang
,
M. R.
, and
Kahraman
,
A.
,
2015
, “
An Experimental and Theoretical Study of the Dynamic Behavior of Double-Helical Gear Sets
,”
J. Sound Vib.
,
350
, pp.
11
29
.10.1016/j.jsv.2015.04.008
16.
Sondkar
,
P.
, and
Kahraman
,
A.
,
2013
, “
A Dynamic Model of a Double-Helical Planetary Gear Set
,”
Mech. Mach. Theory
,
70
, pp.
157
174
.10.1016/j.mechmachtheory.2013.07.005
17.
Kahraman
,
A.
,
1994
, “
Dynamic Analysis of a Multi-Mesh Helical Gear Train
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
706
712
.10.1115/1.2919440
18.
Singh
,
R.
,
Xie
,
H.
, and
Comparin
,
R. J.
,
1989
, “
Analysis of Automotive Neutral Gear Rattle
,”
J. Sound Vib.
,
131
(
2
), pp.
177
196
.10.1016/0022-460X(89)90485-9
19.
Kadmiri
,
Y.
,
Rigaud
,
E.
,
Perret-Liaudet
,
J.
, and
Vary
,
L.
,
2012
, “
Experimental and Numerical Analysis of Automotive Gearbox Rattle Noise
,”
J. Sound Vib.
,
331
(
13
), pp.
3144
3157
.10.1016/j.jsv.2012.02.009
20.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Vibro-Impact Motions of a Three-Degree-of-Freedom Geartrain Subjected to Torque Fluctuations: Model and Experiments
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
12
), p.
121002
.10.1115/1.4055595
21.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Characterization of Nonlinear Rattling Behavior of a Gear Pair Through a Validated Torsional Model
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
4
), p.
041006
.10.1115/1.4053367
22.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Influence of Various Manufacturing Errors on Gear Rattle
,”
Mech. Mach. Theory
,
173
, p.
104868
.10.1016/j.mechmachtheory.2022.104868
23.
Donmez
,
A.
, and
Kahraman
,
A.
,
2023
, “
An Experimental and Theoretical Investigation of the Influence of Backlash on Gear Train Vibro-Impacts and Rattle Noise
,”
Proc. Inst. Mech. Eng., Part K
,
237
(
1
), pp.
131
141
.10.1177/14644193221134322
24.
Moetakef
,
M.
,
Zouani
,
A.
,
Felice
,
M.
,
Baumann
,
J.
,
Campbell
,
B.
,
Pesheck
,
E.
,
Baudson
,
R.
, and
Cabrol
,
M.
,
2019
, “
An Analytical Methodology for Engine Gear Rattle and Whine Assessment and Noise Simulation
,”
SAE
Paper No. 2019-01-07.10.4271/2019-01-07
25.
Ma
,
Q.
, and
Kahraman
,
A.
,
2005
, “
Period-One Motions of a Mechanical Oscillator With Periodically Time-Varying, Piecewise-Nonlinear Stiffness
,”
J. Sound Vib.
,
284
(
3–5
), pp.
893
914
.10.1016/j.jsv.2004.07.026
26.
Donmez
,
A.
, and
Kahraman
,
A.
,
2023
, “
A Rattle Noise Severity Index for Multi-Mesh Gear Trains Subjected to Torque Fluctuations
,”
ASME J. Vib. Acoust.
,
145
(
1
), p.
011007
.10.1115/1.4055134
27.
Donmez
,
A.
, and
Kahraman
,
A.
,
2022
, “
Experimental and Theoretical Investigation of Vibro-Impact Motions of a Gear Pair Subjected to Torque Fluctuations to Define a Rattle Noise Severity Index
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041001
.10.1115/1.4053264
28.
Chen
,
X.
,
Hu
,
J.
,
Chen
,
K.
, and
Peng
,
Z.
,
2016
, “
Modeling of Electromagnetic Torque Considering Saturation and Magnetic Field Harmonics in Permanent Magnet Synchronous Motor for HEV
,”
Simul. Modell. Pract. Theory
,
66
, pp.
212
225
.10.1016/j.simpat.2016.02.012
29.
Le Besnerais
,
J.
,
Lanfranchi
,
V.
,
Hecquet
,
M.
, and
Brochet
,
P.
,
2010
, “
Characterization and Reduction of Audible Magnetic Noise Due to PWM Supply in Induction Machines
,”
IEEE Trans. Ind. Electron.
,
57
(
4
), pp.
1288
1295
.10.1109/TIE.2009.2029529
30.
Le Besnerais
,
J.
,
2015
, “
Vibroacoustic Analysis of Radial and Tangential Air-Gap Magnetic Forces in Permanent Magnet Synchronous Machines
,”
IEEE Trans. Magn.
,
51
(
6
), pp.
1
9
.10.1109/TMAG.2015.2388613
31.
Le Besnerais
,
J.
,
Lanfranchi
,
V.
,
Hecquet
,
M.
,
Brochet
,
P.
, and
Friedrich
,
G.
,
2010
, “
Prediction of Audible Magnetic Noise Radiated by Adjustable-Speed Drive Induction Machines
,”
IEEE Trans. Ind. Appl.
,
46
(
4
), pp.
1367
1373
.10.1109/TIA.2010.2049624
32.
Mughal
,
H.
,
Dolatabadi
,
N.
, and
Rahmani
,
R.
,
2023
, “
An Integrated Tribodynamic Model for Investigation of Efficiency, Durability and NVH Attributes of Gear Mesh in Electric Vehicle Powertrains
,”
Tribol. Int.
,
189
, p.
108977
.10.1016/j.triboint.2023.108977
33.
Mughal
,
H.
,
Sivayogan
,
G.
,
Dolatabadi
,
N.
, and
Rahmani
,
R.
,
2022
, “
An Efficient Analytical Approach to Assess Root Cause of Nonlinear Electric Vehicle Gear Whine
,”
Nonlinear Dyn.
,
110
(
4
), pp.
3167
3186
.10.1007/s11071-022-07800-0
34.
Westphal
,
C.
,
Brimmers
,
J.
, and
Brecher
,
C.
,
2021
, “
Algorithm-Based Optimization of Gear Mesh Efficiency in Stepped Planetary Gear Stages for Electric Vehicles
,”
American Gear Manufacturers Association Fall Technical Meeting
, Chicago, IL, Nov. 1–3, pp.
136
151
.https://www.geartechnology.com/articles/29902-algorithm-based-optimization-of-gear-mesh-efficiency-in-stepped-planetary-gear-stages-for-electric-vehicles
35.
Westphal
,
C.
,
Brimmers
,
J.
, and
Brecher
,
C.
,
2023
, “
Design of Tooth Flank Modifications in Transmission Systems Considering Dynamic Misalignments
,”
ASME
Paper No. DETC2023-112363.10.1115/DETC2023-112363
36.
Wellmann, T., Tousignant, T., Govindswamy, K., Tomazic, D., Steffens, C., and Janssen, P., 2019, “NVH Aspects of Electric Drive Unit Development and Vehicle Integration,”
SAE
Paper No. 2019-01-1454.10.4271/2019-01-1454
37.
Tammi
,
K.
,
Minav
,
T.
, and
Kortelainen
,
J.
,
2018
, “
Thirty Years of Electro-Hybrid Powertrain Simulation
,”
IEEE Access
,
6
, pp.
35250
35259
.10.1109/ACCESS.2018.2850916
38.
Crowther
,
A. R.
,
Janello
,
C.
, and
Singh
,
R.
,
2007
, “
Quantification of Clearance-Induced Impulsive Sources in a Torsional System
,”
J. Sound Vib.
,
307
(
3–5
), pp.
428
451
.10.1016/j.jsv.2007.05.055
39.
Windows-LDP
,
2019
,
Load Distribution Program
,
The Ohio State University
,
Columbus, OH
.
40.
Advanced Numerical Solutions,
2019
,
Transmission3D
,
Advanced Numerical Solutions Inc
,
Hilliard, OH
.
41.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Period One
,”
J. Sound Vib.
,
279
(
1–2
), pp.
417
451
.10.1016/j.jsv.2003.11.029
42.
Tien
,
M. H.
, and
D'Souza
,
K.
,
2019
, “
Transient Dynamic Analysis of Cracked Structures With Multiple Contact Pairs Using Generalized HSNC
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1115
1131
.10.1007/s11071-019-04844-7
43.
Padmanabhan
,
C.
,
Barlow
,
R. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
1995
, “
Computational Issues Associated With Gear Rattle Analysis
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
185
192
.10.1115/1.2826105
44.
Tamminana
,
V. K.
,
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2007
, “
A Study of the Relationship Between the Dynamic Factors and the Dynamic Transmission Error of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
75
84
.10.1115/1.2359470
45.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Contact Problem Element Solution for a Three-Dimensional
,”
Int. J. Numer. Methods Eng.
,
31
(
3
), pp.
525
545
.10.1002/nme.1620310308
46.
Özgüven
,
H. N. N.
, and
Houser
,
D. R. R.
,
1988
, “
Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error
,”
J. Sound Vib.
,
125
(
1
), pp.
71
83
.10.1016/0022-460X(88)90416-6
You do not currently have access to this content.