A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. Approaches to dealing with high index differential algebraic equations, based on index reduction techniques, are reviewed and discussed. Constraint violation stabilization techniques that have been developed to control constraint drift are also reviewed. These techniques are used in conjunction with algorithms that do not exactly enforce the constraints. Control theory forms the basis for a number of these methods. Penalty based techniques have also been developed, but the augmented Lagrangian formulation presents a more solid theoretical foundation. In contrast to constraint violation stabilization techniques, constraint violation elimination techniques enforce exact satisfaction of the constraints, at least to machine accuracy. Finally, as the finite element method has gained popularity for the solution of multibody systems, new techniques for the enforcement of constraints have been developed in that framework. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.

1.
Laulusa
,
A.
, and
Bauchau
,
O. A.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011004
.
2.
Gear
,
C. W.
, 1988, “
Differential-Algebraic Equation Index Transformations
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
9
(
1
), pp.
40
47
.
3.
Eich
,
E.
, 1993, “
Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems With Algebraic Constraints
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
30
(
5
), pp.
1467
1482
.
4.
Yen
,
J.
,
Haug
,
E. J.
, and
Tak
,
T. O.
, 1991, “
Numerical Methods for Constrained Equations of Motion in Mechanical System Dynamics
,”
Mech. Struct. Mach.
0890-5452,
19
(
1
), pp.
41
76
.
5.
Yen
,
J.
, 1993, “
Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
30
(
2
), pp.
553
568
.
6.
Potra
,
F. A.
, and
Yen
,
J.
, 1991, “
Implicit Numerical Integration for Euler-Lagrange Equations via Tangent Space Parametrization
,”
Mech. Struct. Mach.
0890-5452,
19
(
1
), pp.
77
98
.
7.
Haug
,
E. J.
, and
Yen
,
J.
, 1992, “
Implicit Numerical Integration of Constrained Equations of Motion via Generalized Coordinate Partitioning
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
296
304
.
8.
Yen
,
J.
, and
Petzold
,
L. R.
, 1998, “
An Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic Systems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
19
(
5
), pp.
1513
1534
.
9.
Yen
,
J.
,
Petzold
,
L. R.
, and
Raha
,
S.
, 1998, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
341
355
.
10.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
282
292
.
11.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
371
375
.
12.
Tseng
,
F. C.
,
Ma
,
Z. D.
, and
Hulbert
,
G. M.
, 2003, “
Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
439
472
.
13.
Borri
,
M.
,
Croce
,
A.
, and
Trainelli
,
L.
, and
Croce
,
A.
, 2006, “
The Embedded Projection Method: A General Index Reduction Procedure for Constrained System Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
6974
6992
.
14.
Parczewski
,
J.
, and
Blajer
,
W.
, 1989, “
On Realization of Program Constraints: Part I—Theory
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
676
679
.
15.
Blajer
,
W.
, and
Parczewski
,
J.
, 1989, “
On Realization of Program Constraints. Part II—Practical Implications
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
680
684
.
16.
Baumgarte
,
J. W.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamic Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
17.
Ostermeyer
,
G. P.
, 1990, “
On Baumgarte Stabilization for Differential Algebraic Equations
,” in
Real-Time Integration Methods for Mechanical System Simulation
,
E. J.
Haug
, and
R. C.
Deyo
, eds.,
Springer-Verlag
,
Berlin
, pp.
193
207
.
18.
Eich
,
E.
, and
Hanke
,
M.
, 1995, “
Regularization Methods for Constrained Mechanical Multibody Systems
,”
Z. Angew. Math. Mech.
0044-2267,
75
(
10
), pp.
761
773
.
19.
Nikravesh
,
P. E.
,
Wehage
,
R. A.
, and
Kwon
,
O. K.
, 1985, “
Euler Parameters in Computational Dynamics and Kinematics. Part I and Part II
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
(
3
), pp.
358
369
.
20.
Park
,
T. W.
, and
Haug
,
E. J.
, 1986, “
A Hybrid Numerical Integration Method for Machine Dynamic Simulation
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
211
216
.
21.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
, 1985, “
An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
488
492
.
22.
Bae
,
D. S.
, and
Yang
,
S. M.
, 1990, “
A Stabilization Method for Kinematic and Kinetic Constraint Equations
,” in
Real-Time Integration Methods for Mechanical System Simulation
,
E. J.
Huang
, and
R. C.
Deyo
, eds.,
Springer-Verlag
,
Berlin
, pp.
209
232
.
23.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
, 1995, “
Stability and Accuracy Analysis of Baumgarte’s Constraint Violation Stabilization Method
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
446
453
.
24.
Chiou
,
J. C.
, and
Wu
,
S. D.
, 1998, “
Constraint Violation Stabilization Using Input-Output Feedback Linearization in Multibody Dynamic Analysis
,”
J. Guid. Control Dyn.
0731-5090,
21
(
2
), pp.
222
228
.
25.
Lin
,
S. T.
, and
Hong
,
M. C.
, 1998, “
Stabilization Method for Numerical Integration of Multibody Mechanical Systems
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
565
572
.
26.
Park
,
K. C.
, and
Chiou
,
J. C.
, 1988, “
Stabilization of Computational Procedures for Constrained Dynamical Systems
,”
J. Guid. Control Dyn.
0731-5090,
11
(
4
), pp.
365
370
.
27.
Bayo
,
E.
,
García de Jalón
,
J.
, and
Serna
,
M. A.
, 1988, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
183
195
.
28.
Bayo
,
E.
,
García de Jalón
,
J.
,
Avello
,
A.
, and
Cuadrado
,
J.
, 1991, “
An Efficient Computational Method for Real Time Multibody Dynamic Simulation in Fully Cartesian Coordinates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
92
, pp.
377
395
.
29.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
, 1994, “
Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1058
1064
.
30.
Blajer
,
W.
, 2002, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
7
, pp.
265
284
.
31.
Baumgarte
,
J. W.
, 1983, “
A New Method of Stabilization for Holonomic Constraints
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
869
870
.
32.
Terze
,
Z.
,
Lefeber
,
D.
, and
Muftić
,
O.
, 2001, “
Null Space Integration Method for Constrained Multi-Body System Simulation With No Constraint Violation
,”
Multibody Syst. Dyn.
1384-5640,
6
, pp.
229
243
.
33.
Bayo
,
E.
, and
Avello
,
A.
, 1994, “
Singularity-Free Augmented Lagrangian Algorithms for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
5
, pp.
209
231
.
34.
Bayo
,
E.
, and
Ledesma
,
R.
, 1996, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
113
130
.
35.
Schiehlen
,
W. O.
, 1991, “
Computational Aspects in Multibody System Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
90
, pp.
569
582
.
36.
Cuadrado
,
J.
,
Cardenal
,
J.
, and
Bayo
,
E.
, 1997, “
Modeling and Solution Methods for Efficient Real-Time Simulation of Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
259
280
.
37.
García de Jalón
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer-Verlag
,
New York
.
38.
Géradin
,
M.
, and
Cardona
,
A.
, 2001,
Flexible Multibody System: A Finite Element Approach
,
Wiley
,
New York
.
39.
Shabana
,
A. A.
, 1997, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
189
222
.
40.
Shabana
,
A. A.
, 1985, “
Substructure Synthesis Methods for Dynamic Analysis of Multi-Body Systems
,”
Comput. Struct.
0045-7949,
20
, pp.
737
744
.
41.
Cardona
,
A.
, and
Géradin
,
M.
, 1992, “
A Superelement Formulation for Mechanism Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
100
, pp.
1
29
.
42.
Hughes
,
T. J. R.
, 1992,
The Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
44.
Shampine
,
L. F.
, and
Gordon
,
M. K.
, 1975,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
Freeman
,
San Francisco
.
45.
Cardona
,
A.
, and
Géradin
,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
0045-7949,
33
(
3
), pp.
801
820
.
46.
Cardona
,
A.
, 1989, “
An Integrated Approach to Mechanism Analysis
,” Ph.D. thesis, Université de Liège, Liege, Belgium.
47.
Newmark
,
N. M.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
0044-7951,
85
, pp.
67
94
.
48.
Hughes
,
T. J. R.
, 1983, “
Analysis of Transient Algorithms With Particular Reference to Stability Behavior
,” in
Computational Methods for Transient Analysis
,
T.
Belytschko
, and
T. J. R.
Hughes
, eds.,
North-Holland
,
Amsterdam
, pp.
67
155
.
49.
Bauchau
,
O. A.
,
Damilano
,
G.
, and
Theron
,
N. J.
, 1995, “
Numerical Integration of Nonlinear Elastic Multi-Body Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
2727
2751
.
50.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2003, “
Robust Integration Schemes for Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
3–4
), pp.
395
420
.
51.
Bauchau
,
O. A.
, and
Theron
,
N. J.
, 1996, “
Energy Decaying Schemes for Nonlinear Elastic Multi-Body Systems
,”
Comput. Struct.
0045-7949,
59
(
2
), pp.
317
331
.
52.
Bauchau
,
O. A.
, 1998, “
Computational Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
2
), pp.
169
225
.
53.
Bauchau
,
O. A.
, and
Bottasso
,
C. L.
, 1999, “
On the Design of Energy Preserving and Decaying Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
169
(
1–2
), pp.
61
79
.
54.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2001, “
Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms. Part I: Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3669
3699
.
55.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2001, “
Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms. Part II: Numerical Schemes and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3701
3733
.
56.
Gonzalez
,
O.
, 1999, “
Mechanical Systems Subject to Holonomic Constraints: Differential-Algebraic Formulations and Conservative Integration
,”
Physica D
0167-2789,
132
, pp.
165
174
.
57.
Bauchau
,
O. A.
, 2003, “
A Self-Stabilized Algorithm for Enforcing Constraints in Multibody Systems
,”
Int. J. Solids Struct.
0020-7683,
40
(
13–14
), pp.
3253
3271
.
58.
Betsch
,
P.
, 2005, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I: Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
50–52
), pp.
5159
5190
.
59.
Betsch
,
P.
, and
Leyendecker
,
S.
, 2006, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
67
, pp.
499
552
.
60.
Betsch
,
P.
, and
Steinmann
,
P.
, 2002, “
A DAE Approach to Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
367
391
.
61.
Arnold
,
M.
, 1995, “
A Perturbation Analysis for the Dynamical Simulation of Mechanical Multibody Systems
,”
Appl. Numer. Math.
0168-9274,
18
, pp.
37
56
.
62.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
, 2007, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
29
(
1
), pp.
397
414
.
You do not currently have access to this content.