In this paper, a modular modeling approach of multibody systems adapted to interactive simulation is presented. This work is based on the study of the stability of two differential algebraic equation solvers. The first one is based on the acceleration-based augmented Lagrangian formulation and the second one on the Baumgarte formulation. We show that these two solvers give the same results and have to satisfy the same criteria to stabilize the algebraic constraint acceleration error. For a modular modeling approach, we propose to use the Baumgarte formulation and an iterative Uzawa algorithm to solve external constraint forces. This work is also the first step to validate the concept of two types of numerical components for object-oriented programming.

1.
Dixit
,
D. S.
,
Shanbhag
,
S. H.
,
Mudur
,
S. P.
,
Isaac
,
K.
, and
Chinchalkar
,
S.
, 1999, “
Object-Oriented Design of an Interactive Mechanism Simulation System-Clodion
,”
Comput. Graphics
0097-8493,
23
, pp.
85
94
.
2.
Feng
,
Z. Q.
,
Joli
,
P.
, and
Séguy
,
N.
, 2004, “
FER/Mech—A Software With Interactive Graphics for Dynamic Analysis of Multibody System
,”
Adv. Eng. Software
0965-9978,
35
, pp.
1
8
.
3.
Schiehlen
,
W.
, 2001, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
149
188
.
4.
Baraff
,
D.
, 1996, “
Linear-Time Dynamics Using Lagrange Multipliers
,”
Siggraph 96
,
New Orleans, LA
, Aug. 4–9.
5.
Wang
,
J.
,
Ma
,
Z. D.
, and
Hulbert
,
G. M.
, 2003, “
A Gluing Algorithm for Distributed Simulation of Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
34
(
1–2
), pp.
159
188
.
6.
Tseng
,
F. C.
,
Ma
,
Z. D.
, and
Hulbert
,
G. M.
, 2003, “
Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
439
472
.
7.
Sauer
,
J.
, and
Schmer
,
E.
, 1998, “
A Constraint-Based Approach to Rigid Body Dynamics for Virtual Reality Applications
,”
ACM Symposium on Virtual Reality Software and Technology
,
Taipei, Taiwan
, Nov. 2–5.
8.
Gao
,
S.
,
Wan
,
H.
, and
Peng
,
Q.
, 2000, “
An Approach to Solid Modeling in a Semi-Immersive Virtual Environment
,”
Comput. Graphics
0097-8493,
24
, pp.
191
202
.
10.
Fahrat
,
C.
,
Crivelli
,
L.
, and
Gradin
,
M.
, 1995, “
Implicit Time Integration of a Class of Constrained Hybrid Formulation. I. Spectral Stability Theory
,”
34th AIAA Adaptative Structure Forum
,
125
, pp.
71
104
.
11.
Baumgarte
,
J. W.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
12.
Gear
,
C. W.
,
Leimkuhler
,
B.
, and
Gupta
,
G. K.
, 1985, “
Automatic Integration of Euler Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12
, pp.
77
90
.
13.
Bayo
,
E.
, and
Avello
,
A.
, 1994, “
Singularity-Free Augmented Lagrangian Algorithms for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
5
, pp.
209
231
.
14.
Shabana
,
A.
, 1994,
Computational Dynamics
,
Wiley
,
New York
.
15.
Schiehlen
,
W.
, 1990,
Multibody System Handbook
,
Springer
,
Berlin
.
16.
Wehage
,
R.
, and
Haug
,
E.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
1050-0472,
104
, pp.
245
255
.
17.
Minh Tran
,
D.
, 1991, “
Equations of Motion Multibody Systems in the ESA-MIDAS Software
,”
International Conference on Spacecraft Structures and Mechanical Testing ESTEC
,
Noordwijk, Sweden
, Apr. 24–26.
18.
Blajer
,
W.
, 2002, “
Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems With Singularities and Redundancy
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
141
159
.
20.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
, 1989,
The Numerical Solution of Initial Value Problems in Differential-Algebraic Equations
,
Elsevier Science
,
New York
.
21.
Uzawa
,
H.
,
Anow
,
K.
, and
Hurwicz
,
L.
, 1958,
Studies in Linear and Non linear Programming
,
Stanford University Press
,
Stanford
.
22.
Nikravesh
,
P. E.
, and
Attia
,
H. A.
, 1994, “
Construction of the Equations of Motion for Multibody Dynamics Using Point and Joint Coordinates
,”
Computer-Aided Analysis of Rigid and Flexible Mechanical System
,
NATO ASI, Series E: Applied Sciences
Vol.
268
,
Kluwer Academic
,
Dordrecht
, pp.
31
60
.
23.
Laursen
,
T. A.
, 2002,
Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
,
Springer
,
New York
.
24.
Feng
,
Z.-Q.
,
Joli
,
P.
,
Cros
,
J.-M.
, and
Magnain
,
B.
, 2005, “
The Bi-Potential Method Applied to the Modeling of Dynamic Problems With Friction
,”
Comput. Mech.
0178-7675,
36
, pp.
375
383
.
You do not currently have access to this content.