In this work, we analyzed a bifurcational behavior of a longitudinal flight nonlinear dynamics, taking as an example the F-8 aircraft “Crusader.” We deal with an analysis of high angles of attack in order to stabilize the oscillations; those were close to the critical angle of the aircraft, in the flight conditions, established. We proposed a linear optimal control design applied to the considered nonlinear aircraft model below angle of stall, taking into account regions of Hopf and saddled noddle bifurcations.
1.
Planeaux
, J. B.
, Barth
, T. J.
, and Eglin
, A. F. B.
, 1998, “High-Angle-of-Attack Dynamic Behavior of a Model High-Performance Fighter Aircraft
,” AIAA Atmospheric Flight Mechanics Conference I
, Minneapolis, MN
, Aug. 15–17, Paper No. AIAA-88-4368.2.
Jahnke
, C. C.
, and Culliak
, F. E. C.
, 1994, “Application of Bifurcation Theory to the High-Angle-of-Attack Dynamics of the F-14
,” J. Aircr.
0021-8669, 31
, pp. 26
–34
.3.
Goman
, M. G.
, and Khramtsovskyt
, A. V.
, 1997, “Global Stability Analysis of Nonlinear Aircraft Dynamics
,” Report No. AIAA-97-3721, pp. 662
–672
.4.
Sibilski
, S. K.
, and Roman
, R.
, 2006, “The Continuation Design Framework for Nonlinear Aircraft Control
,” 44th AIAA Aerospace Sciences Meeting and Exhibit
, Jan. 9–12 Reno, NV
, Paper No. AIAA 2006-426.5.
Garrard
, W. L.
, and Jordan
, J. M.
, 1977, “Design of Nonlinear Automatic Flight Control Systems
,” Automatica
0005-1098, 13
(5
), pp. 497
–505
.6.
Liaw
, D.-C.
, and Song
, C.-C.
, 2001, “Analysis of Longitudinal Flight Dynamics: A Bifurcation-Theoretic Approach
,” J. Guid. Control Dyn.
0731-5090, 24
(1
), pp. 109
–116
.7.
Liaw
, D.-C.
, 2003, “Two-Parameter Bifurcation Analysis of Longitudinal Flight Dynamics
,” IEEE Trans. Aerosp. Electron. Syst.
0018-9251, 39
(3
), pp. 1103
–1110
.8.
Rafikov
, M.
, and Balthazar
, J. M.
, 2005, “Optimal Linear and Nonlinear Control Design for Chaotic Systems
,” Proceedings of IDETC’05, 2005 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Long Beach
, CA
, Sept. 24–28, Paper No. DETC2005-84998.9.
Rafikov
, M.
, and Balthazar
, J. M.
, 2007, “On Control and Synchronization in Chaotic and Hyperchaotic Systems via Linear Feedback Control
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, in press.10.
Dhooge
, A.
, Govaerts
, W.
, and Kuznetsov
, Y. A.
, 2003, “Matcont: A Matlab Package for Numerical Bifurcation Analysis of Odes
,” ACM Trans. Math. Softw.
0098-3500, 29
(2
), pp. 141
–164
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.