An exact Fourier series method is developed for the vibration analysis of multispan beam systems. In this method, the displacement on each beam is expressed as a Fourier series expansion plus an auxiliary closed-form function such as polynomials. The auxiliary function is used to deal with all the possible discontinuities, at the end points, with the original displacement function and its derivatives when they are periodically extended over the entire $x$-axis as implied by a Fourier series representation. As a result, not only is it always possible to expand the beam displacements into Fourier series under any boundary conditions, but also the series solution will be substantially improved in terms of its accuracy and convergence. Mathematically, the current Fourier series expansion represents an exact solution to a class of beam problems in the sense that both the governing equations and the boundary/coupling conditions are simultaneously satisfied to any specified degree of accuracy. In the multispan beam system model, any two adjacent beams are generally connected together via a pair of linear and rotational springs, allowing a better modeling of many real-world joints. Each beam in the system can also be independently and elastically restrained at its ends so that all boundary conditions including the classical homogeneous boundary conditions at the end and intermediate supports can be universally dealt with by simply varying the stiffnesses of the restraining springs accordingly, which does not involve any modification of basis functions, formulations, or solution procedures. The excellent accuracy and convergence of this series solution is demonstrated through numerical examples.

1.
Lee
,
H. P.
, 1996, “
Dynamic Response of a Beam on Multiple Supports With a Moving Mass
,”
Struct. Eng. Mech.
1225-4568,
4
, pp.
303
312
.
2.
Chatterjee
,
P. K.
,
Datta
,
T. K.
, and
Surana
,
C. S.
, 1994, “
Vibration of Continuous Bridges Under Moving Vehicles
,”
J. Sound Vib.
0022-460X,
169
, pp.
619
632
.
3.
Hayashikawa
,
T.
, and
Watanabe
,
N.
, 1981, “
Dynamic Behavior of Continuous Beams With Moving Loads
,”
J. Eng. Mech.
,
107
, pp.
229
246
. 0733-9399
4.
Henchi
,
K.
,
Fafard
,
M.
,
Dhatt
,
G.
, and
Talbot
,
M.
, 1997, “
Dynamic Behaviour of Multi-Span Beams Under Moving Loads
,”
J. Sound Vib.
0022-460X,
199
, pp.
33
50
.
5.
Yang
,
Y. B.
,
Liao
,
S. S.
, and
Lin
,
B. H.
, 1995, “
Impact Formulas for Vehicles Moving Over Simple and Continuous Beams
,”
J. Struct. Eng.
0733-9445,
121
, pp.
1644
1650
.
6.
Cheung
,
Y. K.
,
Au
,
F. T. K.
,
Zheng
,
D. Y.
, and
Cheng
,
Y. S.
, 1999, “
Vibration of Multi-Span Non-Uniform Bridges Under Moving Vehicles and Trains by Using Modified Beam Vibration Functions
,”
J. Sound Vib.
,
228
, pp.
611
628
. 0022-460X
7.
Wang
,
T. L.
, and
Huang
,
D. Z.
, 1992, “
Cable-Stayed Bridge Vibration Due to Road Surface Roughness
,”
J. Struct. Eng.
0733-9445,
118
, pp.
1354
1374
.
8.
Marchesiello
,
S.
,
Fasana
,
A.
,
Garibaldi
,
L.
, and
Piombo
,
B. A. D.
, 1999, “
Dynamics of Multi-Span Continuous Straight Bridges Subject to Multi-Degrees of Freedom Moving Vehicle Excitation
,”
J. Sound Vib.
0022-460X,
224
, pp.
541
561
.
9.
Dugush
,
Y. A.
, and
Eisenberger
,
M.
, 2002, “
Vibrations of Non-Uniform Continuous Beams Under Moving Loads
,”
J. Sound Vib.
0022-460X,
254
, pp.
911
926
.
10.
,
D. J.
, 1996, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
0022-460X,
190
, pp.
495
524
.
11.
Ungar
,
E. E.
, 1966, “
Steady State Response of One-Dimensional Periodic Flexural Systems
,”
J. Acoust. Soc. Am.
0001-4966,
39
, pp.
887
894
.
12.
Sen Gupta
,
G.
, 1970, “
Natural Flexural Waves and the Normal Mode of Periodically Supported Beams and Plates
,”
J. Sound Vib.
0022-460X,
13
, pp.
89
101
.
13.
Bansal
,
A. S.
, 1979, “
Flexural Wave Motion Beam-Type Disordered Periodic Systems: Coincidence Phenomenon and Sound Radiation
,”
J. Sound Vib.
,
62
, pp.
39
49
. 0022-460X
14.
Hodges
,
C. H.
, and
Woodhouse
,
J.
, 1983, “
Vibration Isolation From Irregularity in a Nearly Periodic Structure: Theory and Measurements
,”
J. Acoust. Soc. Am.
0001-4966,
74
, pp.
894
905
.
15.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1991, “
Localization of Wave Propagation in Disordered Periodic Structures
,”
AIAA J.
0001-1452,
29
, pp.
450
456
.
16.
Bouzit
,
D.
, and
Pierre
,
C.
, 1992, “
Vibration Confinement Phenomena in Disordered, Mono-Coupled, Multi-Span Beams
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
114
, pp.
521
530
.
17.
Pierre
,
C.
,
Castanier
,
M. P.
, and
Chen
,
W. J.
, 1996, “
Wave Localization in Multi-Coupled Periodic Structures: Application to Truss Beams
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
65
86
.
18.
Xu
,
M. B.
, and
Huang
,
L.
, 2002, “
Control of Multi-Span Beam Vibration by a Random Wave Reflector
,”
J. Sound Vib.
,
250
, pp.
591
608
. 0022-460X
19.
Law
,
S. S.
,
Bu
,
J. Q.
,
Zhu
,
X. Q.
, and
Chan
,
S. L.
, 2006, “
Vehicle Condition Surveillance on Continuous Bridges Based on Response Sensitivity
,”
J. Eng. Mech.
0733-9399,
132
, pp.
78
86
.
20.
Feng
,
M. Q.
,
Kim
,
D. K.
,
Yi
,
J. -H.
, and
Chen
,
Y.
, 2004, “
Baseline Models for Bridge Performance Monitoring
,”
J. Eng. Mech.
0733-9399,
130
, pp.
562
569
.
21.
Halling
,
M. W.
,
,
I.
, and
Womack
,
K. C.
, 2001, “
Dynamic Field Testing for Condition Assessment of Bridge Bents
,”
J. Struct. Eng.
0733-9445,
127
, pp.
161
167
.
22.
Zhu
,
X. Q.
, and
Law
,
S. S.
, 1999, “
Moving Forces Identification on a Multi-Span Continuous Bridge
,”
J. Sound Vib.
0022-460X,
228
, pp.
377
396
.
23.
Jiang
,
R. J.
,
Au
,
F. T. K.
, and
Cheung
,
Y. K.
, 2003, “
Identification of Masses Moving on Multi-Span Beams Based on a Genetic Algorithm
,”
Comput. Struc.
,
81
, pp.
2137
2148
. 0045-7949
24.
Wu
,
T. X.
, and
Thompson
,
D. J.
, 2000, “
Application of a Multiple-Beam Model for Lateral Vibration Analysis of a Discretely Supported Rail at High Frequencies
,”
J. Acoust. Soc. Am.
0001-4966,
108
, pp.
1341
1344
.
25.
Wu
,
T. X.
, and
Thompson
,
D. J.
, 1999, “
Analysis of Lateral Vibration Behaviour of Railway Track at High Frequencies Using a Continuously Supported Multiple Beam Model
,”
J. Acoust. Soc. Am.
0001-4966,
106
, pp.
1369
1376
.
26.
Remington
,
P. J.
, 1987, “
Wheel/Rail Rolling Noise—Part I: Theoretical Analysis
,”
J. Acoust. Soc. Am.
0001-4966,
81
, pp.
1805
1823
.
27.
Muller
,
S.
, 1999, “
A Linear Wheel-Track Model to Predict Instability and Short Pitch Corrugation
,”
J. Sound Vib.
,
227
, pp.
899
913
. 0022-460X
28.
Lee
,
H. P.
, 1994, “
Dynamic Response of a Beam With Intermediate Point Constraints Subject to a Moving Load
,”
J. Sound Vib.
0022-460X,
171
, pp.
361
368
.
29.
Zheng
,
D. Y.
,
Cheung
,
Y. K.
,
Au
,
F. T. K.
, and
Cheng
,
Y. S.
, 1998, “
Vibration of Multi-Span Non-Uniform Beams Under Moving Loads by Using Modified Beam Vibration Functions
,”
J. Sound Vib.
0022-460X,
212
, pp.
455
467
.
30.
Zhu
,
X. Q.
, and
S. S.
Law
, 1999. “
Moving Forces Identification on A Multi-Span Continuous Bridge
,”
J. Sound Vib.
0022-460X,
228
(
2
),
377
396
.
31.
Lee
,
H. P.
, 1996, “
Transverse Vibration of a Timoshenko Beam Acted Upon by an Accelerating Mass
,”
Appl. Acoust.
,
47
, pp.
319
330
. 0003-682X
32.
Cha
,
P. D.
, 2005, “
A General Approach to Formulating the Frequency Equations for a Beam Carrying Miscellaneous Attachments
,”
J. Sound Vib.
,
286
, pp.
921
939
. 0022-460X
33.
,
R.
, 1981, “
Dynamic Analysis of a Beam Under a Moving Force: A Double Laplace Transform Solution
,”
J. Sound Vib.
,
74
, pp.
221
233
. 0022-460X
34.
Goel
,
R. P.
, 1976, “
Free Vibrations of a Beam-Mass System With Elastically Restrained Ends
,”
J. Sound Vib.
0022-460X,
47
, pp.
9
14
.
35.
Hong
,
S. -W.
, and
Kim
,
J. -W.
, 1999, “
Modal Analysis of Multi-Span Timoshenko Beams Connected or Supported by Resilient Joints With Damping
,”
J. Sound Vib.
0022-460X,
227
, pp.
787
806
.
36.
Chang
,
T. P.
,
Chang
,
F. I.
, and
Liu
,
M. F.
, 2001, “
On the Eigenvalues of a Viscously Damped Simple Beam Carrying Point Masses and Springs
,”
J. Sound Vib.
0022-460X,
240
, pp.
769
778
.
37.
Dowell
,
E. H.
, 1979, “
On Some General Properties of Combined Dynamical Systems
,”
ASME J. Appl. Mech.
,
46
, pp.
206
209
. 0021-8936
38.
Gürgöze
,
M.
, 1998, “
On the Alternative Formulations of the Frequency Equation of a Bernoulli–Euler Beam to Which Several Spring-Mass Systems Are Attached In-Span
,”
J. Sound Vib.
0022-460X,
217
, pp.
585
595
.
39.
,
B.
, 1997, “
Free Vibrations of Uniform Timoshenko Beams With Attachments
,”
J. Sound Vib.
0022-460X,
204
, pp.
359
369
.
40.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
, 1986, “
Free Vibration of Combined Dynamical Systems
,”
J. Eng. Mech.
0733-9399,
112
, pp.
1
13
.
41.
Bergman
,
L. A.
, and
McFarland
,
D. M.
, 1988, “
On the Vibration of a Point-Supported Linear Distributed System
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
110
, pp.
485
592
.
42.
Abu-Hilal
,
M.
, 2003, “
Forced Vibration of Euler–Bernoulli Beams by Means of Dynamic Green Functions
,”
J. Sound Vib.
,
267
, pp.
191
207
. 0022-460X
43.
Kukla
,
S.
, 1997, “
Application of Green Functions in Frequency Analysis of Timoshenko Beams With Oscillators
,”
J. Sound Vib.
0022-460X,
205
, pp.
355
363
.
44.
Foda
,
M. A.
, and
Abduljabbar
,
Z.
, 1998, “
A Dynamic Green Function Formulation for the Response of a Beam Structure to a Moving Mass
,”
J. Sound Vib.
0022-460X,
210
, pp.
295
306
.
45.
Leung
,
A. Y. T.
, and
Zeng
,
S. P.
, 1994, “
Analytical Formulation of Dynamic Stiffness
,”
J. Sound Vib.
,
177
, pp.
555
564
. 0022-460X
46.
Henchi
,
K.
,
Fafard
,
M.
,
Dhatt
,
G.
, and
Talbot
,
M.
, 1997, “
Dynamic Behaviour of Multi-Span Beams Under Moving Loads
,”
J. Sound Vib.
0022-460X,
199
, pp.
33
50
.
47.
Wang
,
R. -T.
, and
Lin
,
J. -S.
, 1998, “
Vibration of Multi-Span Timoshenko Frames Due to a Moving Loads
,”
J. Sound Vib.
,
212
, pp.
417
434
. 0022-460X
48.
Li
,
W. L.
, 2000, “
Free Vibrations of Beams With General Boundary Conditions
,”
J. Sound Vib.
0022-460X,
237
, pp.
709
725
.
49.
Li
,
W. L.
, 2007, “
Vibrations and Power Flow in a Coupled Beam System
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
616
622
.
50.
Li
,
W. L.
,
Bonilha
,
M. W.
, and
Xiao
,
J.
, 2005, “
Prediction of the Vibrations and Power Flows Between Two Beams Connected at an Arbitrarily Angle
,”
Proceedings of SAE Noise and Vibration Conference
, Traverse City, MI, Paper No. 05NVC-222.
51.
Shankar
,
K.
, and
Keane
,
A. J.
, 1995, “
Energy Flow Predictions in a Structure of Rigidly Joined Beams Using Receptance Theory
,”
J. Sound Vib.
0022-460X,
185
(
5
), pp.
867
890
.
52.
Tan
,
Y. C.
, 2001, “
Efficient Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures
,” Ph.D. thesis, University of Michigan, Ann Arbor.
53.
Engels
,
R. C.
, 1992, “
Finite Element Modeling of Dynamic Behavior of Some Basic Structural Members
,”
ASME J. Vibr. Acoust.
0739-3717,
114
, pp.
3
9
.
54.
Kobayashi
,
N.
, and
Sugiyama
,
H.
, 2001, “
Dynamics of Flexible Beam Using a Component Mode Synthesis Based Formulation
,”
Proceedings of ASME Design Engineering Technical Conferences
, Pittsburgh, PA, Paper No. DETC2001/VIB-21351.
55.
Li
,
W. L.
, 2002, “
Comparison of Fourier Sine and Cosine Series Expansions for Beams With Arbitrary Boundary Conditions
,”
J. Sound Vib.
0022-460X,
255
, pp.
185
194
.