The aim of this work is to apply stochastic methods to investigate uncertain parameters of rotating machines with constant speed of rotation subjected to a support motion. As the geometry of the skew disk is not well defined, randomness is introduced and affects the amplitude of the internal excitation in the time-variant equations of motion. This causes uncertainty in dynamical behavior, leading us to investigate its robustness. Stability under uncertainty is first studied by introducing a transformation of coordinates (feasible in this case) to make the problem simpler. Then, at a point far from the unstable area, the random forced steady state response is computed from the original equations of motion. An analytical method provides the probability of instability, whereas Taguchi’s method is used to provide statistical moments of the forced response.

1.
Lalanne
,
M.
, and
Ferraris
,
G.
, 1998,
Rotordynamics Predictions in Engineering
, 2nd ed.,
Wiley
,
New York
.
2.
Rao
,
J. S.
, 1991,
Rotor Dynamics
, 2nd ed.,
Wiley
,
New York
.
3.
Krämer
,
E.
, 1993,
Dynamics of Rotors and Foundations
,
Springer-Verlag
,
New York
.
4.
Duchemin
,
M.
,
Berlioz
,
A.
, and
Ferraris
,
G.
, 2006, “
Dynamic Behavior and Stability of a Rotor Under Base Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
5
), pp.
576
585
.
5.
Driot
,
N.
,
Lamarque
,
C. H.
, and
Berlioz
,
A.
, 2006, “
Theoretical and Experimental Analysis of a Base Excited Rotor
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
3
), pp.
257
263
.
6.
Tondl
,
A.
, 1992, “
Parametric Resonance Vibration in a Rotor System
,”
Acta Tech. CSAV
,
37
, pp.
185
194
. 1555-1423
7.
Mace
,
B. R.
,
Worden
,
K.
, and
Manson
,
G.
, eds., 2005, “
Uncertainty in Structural Dynamics
,”
J. Sound Vib.
,
288
(
3
), pp.
423
790
, special issue. 1555-1423
8.
Driot
,
N.
, and
Perret-Liaudet
,
J.
, 2006, “
Variability of Modal Behavior in Terms of Critical Speeds of a Gear Pair Due to Manufacturing Errors and Shaft Misalignments
,”
J. Sound Vib.
,
292
, pp.
824
843
. 0022-460X
9.
Heinkelé
,
C.
,
Pernot
,
S.
,
Sgard
,
F.
, and
Lamarque
,
C. H.
, 2006, “
Vibration of an Oscillator With Random Damping: Analytical Expression for the Probability Density Function
,”
J. Sound Vib.
,
296
(
1–2
), pp.
383
400
. 0022-460X
10.
A.
Papoulis
, 1965,
Probability, Random Variables and Stochastic Processes
(
McGraw-Hill Series in Systems Science
),
McGraw-Hill
,
New York
.
11.
Ibrahim
,
R. A.
, 1987, “
Structural Dynamics With Parameter Uncertainties
,”
Appl. Mech. Rev.
,
40
(
3
), pp.
309
328
. 0003-6900
12.
Muszynska
,
A.
, 2005,
Rotordynamics
,
CRC
,
Boca Raton, FL
/
Taylor and Francis
,
London
.
13.
Perret-Liaudet
,
J.
, 1996, “
An Original Method for Computing the Response of a Parametrically Excited Forced System
,”
J. Sound Vib.
0022-460X,
196
(
2
), pp.
165
177
.
14.
Bachelet
,
L.
,
Driot
,
N.
, and
Ferraris
,
G.
, 2006, “
Rotors Under Seismic Excitation: A Spectral Approach
,”
Proceedings of the IFToMM Seventh International Conference on Rotor Dynamics
, Vienna, Austria, Sept. 25–28.
15.
Taguchi
,
G.
, 1978, “
Performance Analysis Design
,”
Int. J. Prod. Res.
0020-7543,
16
(
6
), pp.
521
530
.
16.
D’Errico
,
J. R.
, and
Zaino
,
N. A.
, 1988, “
Statistical Tolerancing Using a Modification of Taguchi’s Method
,”
Technometrics
0040-1706,
30
(
4
), pp.
397
405
.
17.
Yu
,
J. C.
, and
Ishii
,
K.
, 1993, “
A Robust Optimization Procedure for Systems With Significant Non-Linear Effects
,”
ASME Design Automation Conference
, Vol.
DE-65-1
, pp.
371
378
.
18.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1972,
Handbook of Mathematical Functions
,
Dover
,
New York
.
You do not currently have access to this content.