In this paper the dynamic stability of the milling process is investigated through a single degree-of-freedom model by determining the regions where chatter (unstable) vibrations occur in the two-parameter space of spindle speed and depth of cut. Dynamic systems such as milling are modeled by delay-differential equations with time-periodic coefficients. A new approximation technique for studying the stability properties of such systems is presented. The approach is based on the properties of Chebyshev polynomials and a collocation expansion of the solution. The collocation points are the extreme points of a Chebyshev polynomial of high degree. Specific cutting force profiles and stability charts are presented for the up- and down-milling cases of one or two cutting teeth and various immersion levels with linear and nonlinear regenerative cutting forces. The unstable regions due to both secondary Hopf and flip (period-doubling) bifurcations are found, and an in-depth investigation of the optimal stable immersion levels for down-milling in the vicinity of where the average cutting force changes sign is presented.

1.
Tobias
,
S. A.
, 1965,
Machine Tool Vibration
,
Wiley
,
New York
.
2.
Tlusty
,
J.
, 1986, “
Dynamics of High-Speed Milling
,”
ASME J. Eng. Ind.
0022-0817,
108
, pp.
59
67
.
3.
Tlusty
,
J.
, 1993, “
High-Speed Machining
,”
CIRP Ann.
0007-8506,
42
, pp.
733
738
.
4.
Halley
,
J. E.
,
Helvey
,
A. M.
, and
Smith
,
K. S.
, 1999, “
The Impact of High-Speed Machining on the Design and Fabrication of Aircraft Components
,”
17th ASME Biennial Conference on Mechanical Vibration and Noise
, Las Vegas, NV, Sept. 12–15.
5.
Hahn
,
W.
, 1961, “
On Difference Differential Equations With Periodic Coefficients
,”
J. Math. Anal. Appl.
0022-247X,
8
, pp.
70
101
.
6.
Minis
,
I.
, and
Yanushevsky
,
R.
, 1993, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
1
8
.
7.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
, pp.
357
362
.
8.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
217
225
.
9.
Zhao
,
M. X.
, and
Balachandran
,
B.
, 2001, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2233
2248
.
10.
Davies
,
M. A.
,
Dutterer
,
B.
,
Pratt
,
J. R.
, and
Schaut
,
A.
, 1998, “
On the Dynamics of High Speed Milling With Long, Slender Endmills
,”
CIRP Ann.
0007-8506,
47
, pp.
55
60
.
11.
Davies
,
M. A.
,
Dutterer
,
B.
,
Pratt
,
J. R.
, and
Burns
,
T. J.
, 2000, “
The Stability of Low Radial Immersion Milling
CIRP Ann.
0007-8506,
49
(
1
), pp.
37
40
.
12.
Insperger
,
T.
, and
Stépán
,
G.
, 2000, “
Stability of the Milling Process
,”
Period. Polytech., Mech. Eng.-Masinostr.
0324-6051,
44
(
1
), pp.
47
57
.
13.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Vibration Frequencies in High-Speed Milling Processes or a Positive Answer to Davies, Pratt, Dutterer and Burns
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
481
487
.
14.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
117
141
.
15.
Mann
,
B. P.
,
Bayly
,
P. V.
,
Davies
,
M. A.
, and
Halley
,
J. E.
, 2004, “
Limit Cycles, Bifurcations, and Accuracy of the Milling Process
,”
J. Sound Vib.
0022-460X,
277
, pp.
31
48
.
16.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
, 2005, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
446
453
.
17.
Mann
,
B. P.
,
Garg
,
N. K.
,
Young
,
K. A.
, and
Helvey
,
A. M.
, 2005, “
Milling Bifurcations From Structural Asymmetry and Nonlinear Regeneration
,”
Nonlinear Dyn.
0924-090X,
42
(
4
), pp.
319
337
.
18.
Garg
,
N. K.
,
Mann
,
B. P.
,
Kim
,
N. H.
, and
Kurdi
,
M. H.
, 2007, “
Stability of a Time-Delayed System With Parametric Excitation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
(
2
), pp.
125
135
.
19.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
25
34
.
20.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
35
40
.
21.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
, 2003, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
0022-460X,
262
, pp.
333
345
.
22.
Szalai
,
R.
, and
Stépán
,
G.
, 2006, “
Lobes and Lenses in the Stability Chart of Interrupted Turning
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
3
), pp.
205
211
.
23.
Zatarain
,
M.
,
Munoa
,
J.
,
Peigne
,
G.
, and
Insperger
,
T.
, 2006, “
Analysis of the Influence of Mill Helix Angle on Chatter Stability
,”
CIRP Ann.
0007-8506,
55
(
1
), pp.
365
368
.
24.
Patel
,
B. R.
,
Mann
,
B. P.
, and
Young
,
K. A.
, 2008, “
Uncharted Islands of Chatter Instability in Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
, pp.
124
134
.
25.
Long
,
X. -H.
,
Balachandran
,
B.
, and
Mann
,
B. P.
, 2007, “
Dynamics of Milling Processes With Variable Time Delays
,”
Nonlinear Dyn.
0924-090X,
47
(
1–3
), pp.
49
63
.
26.
Olgac
,
N.
, and
Sipahi
,
R.
, 2007, “
Dynamics and Stability of Variable-Pitch Milling
,”
J. Vib. Control
1077-5463,
13
(
7
), pp.
1031
1043
.
27.
Insperger
,
T.
,
Stépán
,
G.
,
Hartung
,
F.
, and
Turi
,
J.
, 2005, “
State-Dependent Regenerative Delay in Milling Processes
,”
Proceedings of the ASME IDETC
, Long Beach, CA, Sept. 24–28.
28.
Sinha
,
S. C.
, and
Wu
,
D. -H.
, 1991, “
An Efficient Computational Scheme for the Analysis of Periodic Systems
,”
J. Sound Vib.
0022-460X,
151
, pp.
91
117
.
29.
Butcher
,
E. A.
,
Ma
,
H.
,
Bueler
,
E.
,
Averina
,
V.
, and
Szabó
,
Z.
, 2004, “
Stability of Linear Time-Periodic Delay-Differential Equations via Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
895
922
.
30.
Bellen
,
A.
, 1984, “
One-Step Collocation for Delayed Differential Equations
,”
J. Comput. Appl. Math.
0377-0427,
10
, pp.
275
283
.
31.
Ito
,
K.
,
Tran
,
H. T.
, and
Manitus
,
A.
, 1991, “
A Fully Discrete Spectral Method for Delay Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
28
, pp.
1121
1140
.
32.
Engelborghs
,
K.
,
Luzyanina
,
T.
,
In‘T Hout
,
K. J.
, and
Roose
,
D.
, 2000, “
Collocation Methods for the Computation of Periodic Solutions of Delay Differential Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
22
,
1593
1609
.
33.
Luzyanina
,
T.
, and
Engelborghs
,
K.
, 2002, “
Computing Floquet Multipliers for Functional Differential Equations
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
, pp.
2977
2989
.
34.
Engelborghs
,
K.
, and
Roose
,
D.
, 2002, “
On Stability of LMS Methods and Characteristic Roots for Delay Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
40
(
2
), pp.
629
650
.
35.
Hale
,
J. K.
, and
Lunel
,
M. V.
, 1993,
Introduction to Functional Differential Equations
,
Springer
,
New York
.
36.
Trefethen
,
L. N.
, 2000,
Spectral Methods in MATLAB
(
Software-Environment-Tools Series
),
SIAM
,
Philadelphia, PA
.
37.
Bueler
,
E.
, 2007, “
Error Bounds for Approximate Eigenvalues of Periodic-Coefficient Linear Delay Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
45
(
6
), pp.
2510
2536
.
38.
Gilsinn
,
D. E.
, and
Potra
,
F. A.
, 2006, “
Integral Operators and Delay Differential Equations
,”
J. Integral Equ. Appl.
0897-3962,
18
(
3
), pp.
297
336
.
39.
Butcher
,
E. A.
,
Nindujarla
,
P.
, and
Bueler
,
E.
, 2005, “
Stability of Up- and Down-Milling Using Chebyshev Collocation Method
,”
Proceedings of the Fifth International Conference on Multibody Systems, Nonlinear Dynamics, and Control, ASME DETC’05
, Long Beach, CA, Sept. 24–28.
40.
Deshmukh
,
V.
,
Butcher
,
E. A.
, and
Bueler
,
E.
, 2008, “
Dimensional Reduction of Nonlinear Delay-Differential Equations With Periodic Coefficients Using Chebyshev Polynomials
,”
Nonlinear Dyn.
0924-090X,
52
, pp.
137
149
.
41.
Deshmukh
,
V.
, 2008, “
Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011010
.
42.
Bueler
,
E.
, 2005, “
Guide to DDEC: Stability of Linear, Periodic DDEs Using the DDEC Suite of MATLAB Codes
,” http://www.dms.uaf.edu/~bueler/DDEcharts.htmhttp://www.dms.uaf.edu/~bueler/DDEcharts.htm.
43.
Shampine
,
L. F.
, and
Thompson
,
S.
, 2001, “
Solving Delay Differential Equations With DDE23
,”
Appl. Numer. Math.
0168-9274,
37
(
4
), pp.
441
458
.
You do not currently have access to this content.