A gauge-invariant formulation for deriving the dynamic equations of constrained multibody systems in terms of (reduced) quasivelocities is presented. This formulation does not require any weighting matrix to deal with the gauge-invariance problem when both translational and rotational components are involved in the generalized coordinates or in the constraint equations. Moreover, in this formulation the equations of motion are decoupled from those of constrained force, and each system has its own independent input. This allows the possibility to develop a simple force control action that is totally independent from the motion control action facilitating a hybrid force/motion control. Tracking force/motion control of constrained multibody systems based on a combination of feedbacks on the vectors of the quasivelocities and the configuration-variables are presented.

1.
Lipkin
,
H.
, and
Duffy
,
J.
, 1988, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
138
144
.
2.
Manes
,
C.
, 1992, “
Recovering Model Consistence for Force and Velocity Measures in Robot Hybrid Control
,”
IEEE International Conference on Robotics and Automation
, pp.
1276
1281
.
3.
De Luca
,
A. D.
, and
Manes
,
C.
, 1994, “
Modeling of Robots in Contact With a Dynamic Environment
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
4
), pp.
542
548
.
4.
Angeles
,
J.
, 2003, “
A Methodology for the Optimum Dimensioning of Robotic Manipulators
,”
Memoria del 5o, Congreso Mexicano de Robótica
, pp.
190
203
.
5.
Aghili
,
F.
, 2005, “
A Unified Approach for Inverse and Direct Dynamics of Constrained Multibody Systems Based on Linear Projection Operator: Applications to Control and Simulation
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
5
), pp.
834
849
.
6.
Kodischeck
,
D. E.
, 1985, “
Robot Kinematics and Coordinate Transformation
,”
IEEE International Conference on Decision and Control
, pp.
1
4
.
7.
Gu
,
Y. L.
, and
Loh
,
N. K.
, 1987, “
Control System Modeling by Using of a Canonical Transformation
,”
IEEE Conference on Decision and Control
, pp.
1
4
.
8.
Bedrossian
,
N. S.
, 1992, “
Linearizing Coordinate Transformation and Riemann Curvature
,”
IEEE International Conference on Decision and Control
, pp.
80
84
.
9.
Spong
,
M. W.
, 1992, “
Remarks on Robot Dynamics: Canonical Transformations and Riemannian Geometry
,”
IEEE International Conference on Robotics and Automation
, pp.
554
559
.
10.
Rodriguez
,
G.
, and
Kertutz-Delgado
,
K.
, 1992, “
Spatial Operator Factorization and Inversion of Manipulator Mass Matrix
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
1
), pp.
65
76
.
11.
Jain
,
A.
, and
Rodriguez
,
G.
, 1995, “
Diagonalized Lagrangian Robot Dynamics
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
4
), pp.
571
584
.
12.
Loduha
,
T. A.
, and
Ravani
,
B.
, 1995, “
On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
0021-8936,
62
(
1
), pp.
216
222
.
13.
Junkins
,
J. L.
, and
Schaub
,
H.
, 1997, “
An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics
,”
J. Astronaut. Sci.
0021-9142,
45
(
3
), pp.
279
295
.
14.
Kozlowski
,
K.
, 1998,
Modelling and Identification in Robotics
,
Springer-Verlag
,
London
.
15.
Papastavridis
,
J. G.
, 1998, “
A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics
,”
Appl. Mech. Rev.
0003-6900,
51
(
4
), pp.
239
265
.
16.
Gu
,
E. Y. L.
, 2000, “
A Configuration Manifold Embedding Model for Dynamic Control of Redundant Robots
,”
Int. J. Robot. Res.
0278-3649,
19
(
3
), pp.
289
304
.
17.
Herman
,
P.
, 2005, “
PD Controller for Manipulator With Kinetic Energy Term
,”
J. Intell. Robotic. Syst.
,
44
, pp.
101
121
. 0921-0296
18.
Herman
,
P.
, and
Kozlowski
,
K.
, 2006, “
A Survey of Equations of Motion in Terms of Inertial Quasi-Velocities for Serial Manipulators
,”
Arch. Appl. Mech.
0939-1533,
76
(
September
), pp.
579
614
.
19.
Sinclair
,
A. J.
,
Hurtado
,
J. E.
, and
Junkins
,
J. L.
, 2006, “
Linear Feedback Control Using Quasi Velocities
,”
J. Guid. Control Dyn.
0731-5090,
29
(
6
), pp.
1309
1314
.
20.
Aghili
,
F.
, 2007, “
Simplified Lagrangian Mechanical Systems With Constraints Using Square-Root Factorization
,”
Multibody Dynamics 2007, ECCOMAS Thematic Conference
.
21.
Aghili
,
F.
, 2008, “
A Gauge-Invariant Formulation for Constrained Robotic Systems Using Square-Root Factorization and Unitary Transformation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
2814
2821
.
22.
Kozolowski
,
K.
, and
Herman
,
P.
, 2000, “
A Comparison of Control Algorithm for Serial Manipulators in Terms of Quasi-Velocity
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1540
1545
.
23.
Herman
,
P.
, and
Kozlowski
,
K.
, 2001, “
Some Remarks on Two Quasi-Velocities Approaches in PD Joint Space Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1888
1893
.
24.
Doty
,
K. L.
,
Melchiorri
,
C.
, and
Bonivento
,
C.
, 1993, “
A Theory of Generalized Inverses Applied to Robotics
,”
Int. J. Robot. Res.
0278-3649,
12
(
1
), pp.
1
19
.
25.
Schutter
,
J. D.
, and
Bruyuinckx
,
H.
, 1996,
The Control Handbook
,
CRC
,
New York
, Chap. Force Control of Robotic Manipulators, pp.
1351
1358
.
26.
Corben
,
H. C.
, and
Stehle
,
P.
, 1960,
Classical Mechanics
,
Wiley
,
New York
.
27.
Meirovitch
,
L.
, 1970, “
Rigid Body Dynamics
,”
Methods of Analytical Dynamics
,
McGraw-Hill
,
New York
, pp.
157
160
.
28.
Baruh
,
H.
, 1999,
Analytical Dynamics
,
McGraw-Hill
,
London
.
29.
Schaub
,
H.
,
Tsiotras
,
P.
, and
Junkins
,
J. L.
, 1995. “
Principal Rotation Representations of Proper NxN Orthogonal Matrices
,”
Int. J. Eng. Sci.
0020-7225,
33
(
2
), pp.
2277
2295
.
30.
Bar-Itzhack
,
I. Y.
, 1989, “
Extension of the Euler’s Theorem to n-Dimensional Spaces
,”
IEEE Aerosp. Electron. Syst. Mag.
0885-8985,
25
(
6
), pp.
903
909
.
31.
Oshman
,
Y.
, and
Bar-Itzhack
,
I.
, 1985, “
Eigenfactor Solution of the Matrix Riccati Equation—A Continous Square Root Algorithm
,”
IEEE Trans. Autom. Control
0018-9286,
30
(
10
), pp.
971
978
.
32.
Klema
,
V. C.
, and
Laub
,
A. J.
, 1980, “
The Singular Value Decomposition: Its Computation and Some Applications
,”
IEEE Trans. Automat. Contr.
,
25
(
2
), pp.
164
176
. 0018-9286
33.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1988,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
New York
.
34.
Golub
,
G. H.
, and
Loan
,
C. F. V.
, 1996,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore, London
.
35.
Anton
,
H.
, 2003,
Contemporary Linear Algebra With Maple Manual Set
,
Wiley
,
New York
.
36.
Kane
,
T. R.
, 1961. “Dynamics of Nonholonomic Systems,” Trans. ASME, J. Appl. Mech., 28(4), pp. 574–578.
37.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics: Theory and Applications
(
McGraw-Hill Series in Mechanical Engineering
),
McGraw-Hill
,
New York
.
38.
de Jalon
,
J. G.
, and
Bayo
,
E.
, 1989,
Kinematic and Dynamic Simulation of Multibody Systems
,
Springer-Verlag
,
Berlin
.
39.
Ascher
,
U. M.
, and
Petzold
,
L. R.
, 1998,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
,
Philadelphia
.
40.
Gear
,
C. W.
, 1971, “
The Simultaneous Numerical Solution of Differential-Algebraic Equations
,”
IEEE Trans. Circuit Theory
0018-9324,
18
, pp.
89
95
.
41.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
42.
Rodríguez
,
G.
, 1987,
Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse Dynamics
, pp.
624
639
.
43.
1996,
Theory of Robot Control
,
C.
Canudas de Wit
,
B.
Siciliano
, and
G.
Bastin
, eds.,
Springer
,
London
.
44.
LaSalle
,
J. P.
, 1960, “
Some Extensions of Lyapunov’s Second Method
,”
IRE Trans. Circuit Theory
0096-2007,
7
(
4
), pp.
520
527
.
45.
Khalil
,
H. K.
, 1992,
Nonlinear Systems
,
Macmillan
,
New York
.
46.
Doty
,
K. L.
,
Melchiorri
,
C.
, and
Bonivento
,
C.
, 1993, “
A Theory of Generalized Inverses Applied to Robotics
,”
Int. J. Robot. Res.
0278-3649,
12
(
1
), pp.
1
19
.
47.
Featherstone
,
R.
, and
Fijany
,
A.
, 1999, “
A Technique for Analyzing Constrained Rigid-Body Systems, and Its Application to Constraint Force Algorithm
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
6
), pp.
1140
1144
.
48.
Featherstone
,
R.
,
Thiebaut
,
S.
, and
Khatib
,
O.
, 1999. “
A General Contact Model for Dynamically-Decoupled Force-Motion Control
,”
IEEE International Conference on Robotics and Automation
, pp.
3281
3286
.
You do not currently have access to this content.