In this paper, nonlinear dynamics of Duffing system with fractional order damping is investigated. The fourth-order Runge–Kutta method and tenth-order CFE-Euler method are introduced to simulate the fractional order Duffing equations. The effect of taking fractional order on system dynamics is investigated using phase diagram, bifurcation diagram and Poincaré map. The bifurcation diagram is introduced to exam the effect of excitation amplitude, frequency, and damping coefficient on the Duffing system with fractional order damping. The analysis results show that the fractional order damped Duffing system exhibits periodic motion, chaos, periodic motion, chaos, and periodic motion in turn when the fractional order varies from 0.1 to 2.0. The period doubling bifurcation route to chaos and inverse period doubling bifurcation out of chaos are clearly observed in the bifurcation diagrams with various excitation amplitude, frequency, and damping coefficient.

1.
Debnath
,
L.
, 2003, “
Recent Applications of Fractional Calculus to Science and Engineering
,”
Int. J. Math. Math. Sci.
0161-1712,
2003
, pp.
3413
3442
.
2.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
, 2007,
Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Berlin
.
3.
Ma
,
C.
, and
Hori
,
Y.
, 2007, “
Fractional-Order Control: Theory and Applications in Motion Control
,”
IEEE Industrial Electronics Magazine
,
1
(
4
), pp.
6
16
.
4.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
, 1995, “
Chaos in a Fractional Order Chua’s System
,”
IEEE Trans. Circuits Syst.
0098-4094,
42
, pp.
485
490
.
5.
Arena
,
P.
,
Caponetto
,
R.
,
Fortuna
,
L.
, and
Porto
,
D.
, 1997, “
Chaos in a Fractional Order Duffing System
,”
Proceedings of ECCTD
, Budapest, pp.
1259
1262
.
6.
Ge
,
G. M.
, and
Ou
,
C. Y.
, 2007, “
Chaos in a Fractional Order Modified Duffing System
,”
Chaos, Solitons Fractals
0960-0779,
34
, pp.
262
291
.
7.
Ahmad
,
W. M.
, and
Sprott
,
J. C.
, 2003, “
Chaos in Fractional-Order Autonomous Nonlinear Systems
,”
Chaos, Solitons Fractals
0960-0779,
16
, pp.
339
351
.
8.
Grigorenko
,
I.
, and
Grigorenko
,
E.
, 2003, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
0031-9007,
91
(
3
), p.
034101
.
9.
Li
,
C.
, and
Chen
,
G.
, 2004, “
Chaos in the Fractional Order Chen System and Its Control
,”
Chaos, Solitons Fractals
0960-0779,
22
, pp.
549
554
.
10.
Li
,
C.
, and
Chen
,
G.
, 2004, “
Chaos and Hyperchaos in Fractional Order Rossler Equation
,”
Physica A
0378-4371,
341
, pp.
55
61
.
11.
Sheu
,
L. J.
,
Chen
,
H. K.
,
Chen
,
J. H.
, and
Tam
,
L. M.
, 2007, “
Chaotic Dynamics of the Fractionally Damped Duffing Equation
,”
Chaos, Solitons Fractals
0960-0779,
32
, pp.
1459
1468
.
12.
Arena
,
P.
,
Caponetto
,
R.
,
Fortuna
,
L.
, and
Porto
,
D.
, 1998, “
Bifurcation and Chaos in Noninteger Order Cellular Neural Networks
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
7
, pp.
1527
1539
.
13.
Arena
,
P.
,
Fortuna
,
L.
, and
Porto
,
D.
, 2000, “
Chaotic Behavior in Noninteger-Order Cellular Neural Networks
,”
Phys. Rev. E
1063-651X,
61
, pp.
776
781
.
14.
Chen
,
J.
, and
Chen
,
W.
, 2008, “
Chaotic Dynamics of the Fractionally Damped Van der Pol Equation
,”
Chaos, Solitons Fractals
0960-0779,
35
, pp.
188
198
.
15.
Barbosa
,
R. S.
,
Tenreiro Machado
,
J. A.
,
Vinagre
,
B. M.
, and
Caldéron
,
A. J.
, 2007, “
Analysis of the Van der Pol Oscillator Containing Derivatives of Fractional Order
,”
J. Vib. Control
1077-5463,
13
(
9–10
), pp.
1291
1301
.
16.
Padovan
,
J.
, and
Sawicki
,
J. T.
, 1998, “
Nonlinear Vibrations of Fractionally Damped Systems
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
321
336
.
17.
Jia
,
J.
,
Shen
,
X.
, and
Hua
,
H.
, 2007, “
Viscoelastic Behavior Analysis and Application of the Fractional Derivative Maxwell Model
,”
J. Vib. Control
1077-5463,
13
(
4
), pp.
385
401
.
18.
Shokooh
,
A.
, and
Suarez
,
L.
, 1999, “
A Comparison of Numerical Methods Applied to a Fractional Model of Damping Materials
,”
J. Vib. Control
1077-5463,
5
, pp.
331
354
.
19.
Sorrentino
,
S.
, and
Fasana
,
A.
, 2007, “
Finite Element Analysis of Vibrating Linear Systems With Fractional Derivative Viscoelastic Models
,”
J. Sound Vib.
0022-460X,
299
, pp.
839
853
.
20.
Galucio
,
A. C.
,
Deu
,
J. F.
, and
Ohayon
,
R.
, 2005, “
A Fractional Derivative Viscoelastic Model for Hybrid Active-Passive Damping Treatments in Time Domain—Application to Sandwich Beams
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
1
), pp.
33
45
.
21.
Borowiec
,
M.
,
Litak
,
G.
, and
Syta
,
A.
, 2007, “
Vibration of the Duffing Oscillator: Effect of Fractional Damping
,”
Shock Vib.
1070-9622,
14
, pp.
29
36
.
22.
Barbosa
,
R. S.
, and
Tenreiro Machado
,
J. A.
, 2002, “
Describing Function Analysis of Systems With Impacts and Backlash
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
235
250
.
23.
Barbosa
,
R. S.
,
Tenreiro Machado
,
J. A.
, and
Ferreira
,
I. M.
, 2003, “
Describing Function Analysis of Mechanical Systems With Nonlinear Friction and Backlash Phenomena
,”
Proceeding of the Second IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control
, Sevilla, Spain, pp.
299
304
.
24.
Tenreiro Machado
,
J. A.
, and
Galhano
,
A.
, 2008, “
Fractional Dynamics: A Statistical Perspective
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
2
), p.
021201
.
25.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2008, “
Limitations of Frequency Domain Approximation for Detecting Chaos in Fractional Order Systems
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
69
(
4
), pp.
1299
1320
.
26.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego
.
27.
Chen
,
Y. Q.
, and
Moore
,
K. L.
, 2002, “
Discretization Schemes for Fractional-Order Differentiators and Integrators
,”
IEEE Trans. Circuits Syst.
0098-4094,
49
(
3
), pp.
363
367
.
28.
Valerio
,
D.
, and
Costa
,
J. S.
, 2005, “
Time-Domain Implementation of Fractional Order Controllers
,”
IEE Proc.: Control Theory Appl.
1350-2379,
152
(
5
), pp.
539
552
.
29.
Ma
,
C.
, and
Hori
,
Y.
, 2004, “
The Time-Scaled Trapezoidal Integration Rule for Discrete Fractional Order Controllers
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
171
180
.
30.
Cao
,
J.
, and
Cao
,
B.
, 2007, “
Evaluation Strategies of Fractional Order Controllers Discretization Methods
,”
Journal of Xian Jiaotong University
,
41
(
7
), pp.
842
846
.
31.
Cao
,
J.
,
Cao
,
B.
,
Zhang
,
X.
, and
Wen
,
G.
, 2008, “
Fractional Proportional Integral Control for Pneumatic Position Servo Systems
,”
Proceedings of IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
, Beijing, pp.
347
352
.
32.
Moon
,
F. C.
, 1987,
Chaotic Vibrations: An Introduction for Applied Scientists and Engineers
,
Wiley
,
New York
.
33.
Benci
,
V.
, and
Masiello
,
A.
, 2004,
Nonlinear Analysis and Applications to Physical Sciences
,
Springer
,
Milano
.
34.
Wolf
,
A.
,
Swinney
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
You do not currently have access to this content.