This paper entails a novel sensitivity-enhancement mechanism for cantilever-based sensors. The enhancement scheme is based on exciting the sensor at the clamped end using a delayed-feedback signal obtained by measuring the tip deflection of the sensor. The gain and delay of the feedback signal are chosen such that the base excitations set the beam into stable limit-cycle oscillations as a result of a supercritical Hopf bifurcation of the trivial fixed points. The amplitude of these limit-cycles is shown to be ultrasensitive to parameter variations and, hence, can be utilized for the detection of minute changes in the resonant frequency of the sensor. The first part of the manuscript delves into the theoretical understanding of the proposed mechanism and the operation concept. Using the method of multiple scales, an approximate analytical solution for the steady-state limit-cycle amplitude near the stability boundaries is obtained. This solution is then utilized to provide a comprehensive understanding of the effect of small frequency variations on the limit-cycle amplitude and the sensitivity of these limit-cycles to different design parameters. Once a deep theoretical understanding is established, the manuscript provides an experimental study to investigate the proposed concept. Experimental results demonstrate orders of magnitude sensitivity enhancement over the traditional frequency-shift method.

1.
Raiteri
,
R.
,
Knoll
,
W.
, and
Skladal
,
P.
, 1999, “
Sensing of Biological Substances Based on the Bending of Microfabricated Cantilevers
,”
Sens. Actuators B
0925-4005,
61
, pp.
213
217
.
2.
Gupta
,
A.
,
Akin
,
D.
, and
Bashir
,
A.
, 2004, “
Detection of Bacterial Cells and Antibodies Using Surface Micromachined Thin Silicon Cantilever Resonators
,”
J. Vac. Sci. Technol.
0022-5355,
32
(
4
), pp.
2785
2791
.
3.
Yang
,
Y.
,
Ji
,
H.
, and
Thundat
,
T.
, 2003, “
Nerve Agents Detection Using a Cu/Lcysteine Bilayercoated Microcantilever
,”
J. Am. Chem. Soc.
0002-7863,
125
(
5
), pp.
1124
1125
.
4.
Chen
,
G.
,
Thundat
,
T.
,
Watcher
,
E.
, and
Warmack
,
R.
, 1995, “
Adsorption-Induced Surface Stress and Its Effects on Resonance Frequency of Microcantilevers
,”
J. Appl. Phys.
0021-8979,
77
(
8
), pp.
3618
3622
.
5.
Daering
,
D. W.
, and
Thundat
,
T.
, 2005, “
Simulation of Adsorption-Induced Stress of a Microcantilever Sensor
,”
J. Appl. Phys.
0021-8979,
97
, p.
043526
.
6.
Su
,
M.
,
Li
,
S.
, and
Dravid
,
V.
, 2003, “
Microcantilever Resonance-Based DNA Detection With Nanoparticle Probes
,”
Appl. Phys. Lett.
0003-6951,
82
(
20
), pp.
3562
3564
.
7.
Baller
,
M.
,
Lang
,
H.
,
Fritz
,
J.
,
Gerber
,
C.
,
Gimzewski
,
J.
,
Drechsler
,
U.
,
Rothuizen
,
H.
,
Despont
,
M.
,
Vettiger
,
P.
,
Battiston
,
F.
,
Ramseyer
,
J.
,
Fornaro
,
P.
,
Meyer
,
E.
, and
Guntherodt
,
H. -J.
, 2000, “
Cantilever Array-Based Artificial Nose
,”
Ultramicroscopy
0304-3991,
82
(
7
), pp.
1
9
.
8.
Ilic
,
B.
,
Yang
,
Y.
, and
Craighead
,
H.
, 2004, “
Virus Detection Using Nanoelectromechanical Devices
,”
Appl. Phys. Lett.
0003-6951,
85
(
13
), pp.
2604
2606
.
9.
Hansen
,
K.
,
Ji
,
H.
,
Wu
,
G.
,
Datar
,
R.
,
Cote
,
R.
,
Majumdar
,
A.
, and
Thundat
,
T.
, 2001, “
Cantilever-Based Optical Deflection Assay for Discrimination of DNA Single-Nucleotide Mismatches
,”
Anal. Chem.
0003-2700,
73
(
7
), pp.
1567
1571
.
10.
Pei
,
J.
,
Tian
,
F.
, and
Thundat
,
T.
, 2004, “
Glucose Biosensor Based on the Microcantilever
,”
Anal. Chem.
0003-2700,
76
, pp.
292
297
.
11.
Arntz
,
Y.
,
Seelig
,
J.
,
Lang
,
H.
,
Zhang
,
J.
,
Hunzicker
,
P.
,
Ramseyer
,
J.
,
Meyer
,
E.
,
Hegener
,
M.
, and
Gerber
,
C.
, 2003, “
Label-Free Protein Assay Based on a Nanomechanical Cantilever Array
,”
Nanotechnology
0957-4484,
14
(
1
), pp.
86
90
.
12.
Lee
,
J.
,
Hwang
,
K.
, and
Park
,
J.
, 2005, “
Immunoassay of Prostate-Specific Antigen (PSA) Using Resonant Frequency Shift of Piezoelectric Nanomechanical Microcantilever
,”
Biosens. Bioelectron.
0956-5663,
20
, pp.
2157
2162
.
13.
Bumbu
,
G.
,
Kircher
,
G.
, and
Wolkenhauer
,
M.
, 2004, “
Synthesis and Characterization of Polymer Brushes on Micromechanical Cantilevers
,”
Macromol. Chem. Phys.
1022-1352,
205
, pp.
1713
1720
.
14.
Zhang
,
Y.
, and
Ji
,
H. -F.
, 2004, “
A pH Sensor Based on a Microcantilever Coated With Intelligent Hydrogel
,”
Instrum. Sci. Technol.
1073-9149,
32
, pp.
361
369
.
15.
Corbeil
,
J.
,
Lavrik
,
N.
,
Rajic
,
S.
, and
Datskos
,
P.
, 2002, “
Self-Leveling” Uncooled Microcantilever Thermal Detector
,”
Appl. Phys. Lett.
0003-6951,
81
, pp.
1306
1308
.
16.
Tian
,
F.
,
Pei
,
J.
,
Hedden
,
D.
,
Brown
,
G.
, and
Thundat
,
T.
, 2004, “
Observation of the Surface Stress Induced in Microcantilevers by Electrochemical Redox Processes
,”
Ultramicroscopy
0304-3991,
100
, pp.
217
223
.
17.
Berger
,
R.
,
Gerber
,
C.
,
Gimzewski
,
J.
,
Meyer
,
E.
, and
Guentherodt
,
H. -J.
, 1996, “
Thermal Analysis Using a Micromechanical Calorimeter
,”
Appl. Phys. Lett.
0003-6951,
69
, pp.
40
42
.
18.
Thundat
,
T.
,
Sharp
,
S.
,
Fisher
,
W.
,
Warmack
,
R.
, and
Wachter
,
E.
, 1995, “
Micromechanical Radiation Dosimeter
,”
Appl. Phys. Lett.
0003-6951,
66
, pp.
1563
1565
.
19.
Zhang
,
W.
, and
Meng
,
G.
, 2005, “
Nonlinear Dynamical System of Micro-Cantilever Under Combined Parametric and Forcing Excitations in MEMS
,”
Sens. Actuators, A
0924-4247,
119
, pp.
291
299
.
20.
Xu
,
X.
,
Thundat
,
T.
,
Brown
,
G. M.
, and
Ji
,
H. -F.
, 2002, “
Detection of Hg Ions Using Microcantilever Sensors
,”
Anal. Chem.
0003-2700,
74
, pp.
3611
3615
.
21.
Cimalla
,
V.
,
Niebelschtza
,
F.
,
Tonischa
,
K.
,
Foerstera
,
C.
,
Bruecknera
,
K.
,
Cimallaa
,
I.
,
Friedrichb
,
T.
,
Pezoldta
,
J.
,
Stephana
,
R.
,
Heina
,
M.
, and
Ambachera
,
O.
, 2007, “
Nanoelectromechanical Devices for Sensing Applications
,”
Sens. Actuators B
0925-4005,
126
(
1
), pp.
24
34
.
22.
Spletzer
,
M.
,
Raman
,
A.
,
Reifenberger
,
R.
,
Wu
,
A. Q.
, and
Xu
,
X.
, 2006, “
Ultrasensitive Mass Sensing Using Mode Localization in Coupled Microcantilevers
,”
Proceedings of International Workshop on Nanomechanical Sensors
, Denmark.
23.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
, 2003, “
Tuning the Dynamic Behavior of Parametric Resonance in Micromechanical Oscillator
,”
Appl. Phys. Lett.
0003-6951,
82
(
1
), pp.
130
132
.
24.
Yin
,
S. -H.
, and
Epureanu
,
B.
, 2006, “
High-Sensitivity Mass Sensing Based on Enhanced Nonlinear Dynamics and Attractor Morphing Modes
,”
2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
, Chicago, IL.
25.
Passian
,
A.
,
Muralidharan
,
G.
,
Kouchekian
,
S.
,
Mehat
,
A.
,
Cherian
,
S.
,
Ferrell
,
T. L.
, and
Thundat
,
T.
, 2002, “
Dynamics of Self-Driven Microcantilevers
,”
J. Appl. Phys.
0021-8979,
91
, pp.
4693
4700
.
26.
Passian
,
A.
,
Muraldharan
,
G.
,
Mehta
,
A.
,
Simpson
,
H.
,
Ferrel
,
T.
, and
Thundat
,
T.
, 2003, “
Manipulation of Microcantilever Oscillations
,”
Ultramicroscopy
0304-3991,
97
, pp.
391
399
.
27.
Passian
,
A.
,
Protopopescu
,
V.
, and
Thundat
,
T.
, 2006, “
Fluctuation and Dissipation of a Stochastic Micro-Oscillator Under Delayed Feedback
,”
J. Appl. Phys.
0021-8979,
100
, p.
114314
.
28.
Yi
,
D.
,
Passian
,
A.
,
Lereu
,
A.
, and
Thundat
,
T.
, 2007, “
An Experimental Investigation of Analog Delay Generation for Dynamic Control of Microsensors and Atomic Force Microscopy
,”
Ultramicroscopy
0304-3991,
107
, pp.
1020
1026
.
29.
Passian
,
A.
,
Lereu
,
A. L.
,
Yi
,
D.
,
Barhen
,
S.
, and
Thundat
,
T.
, 2007, “
Stochastic Excitation and Delayed Oscillation of a Micro-Oscillator
,”
Phys. Rev. B
0556-2805,
75
, p.
233403
.
30.
Burg
,
T. P.
,
Godin
,
M.
,
Knudsen
,
S. M.
,
Shen
,
W.
,
Carlson
,
G.
,
Foster
,
J. S.
,
Babcock
,
K.
, and
Manalis
,
S. R.
, 2007, “
Wieghing of Biomolecules, Single Cells, and Single Nanoparticles in Fluid
,”
Nature Letters
,
446
, pp.
1066
1069
.
31.
Zhang
,
W.
, and
Turner
,
K. L.
, 2004, “
A Mass Sensor Based on Parametric Resonance
,”
Proceedings of the Solid State Sensor, Actuator and Microsystem Workshop
, Hilton Head Island, SC.
32.
Epureanu
,
B.
, and
Hashemi
,
A.
, 2006, “
Parameter Reconstruction Based on Sensitivity Vector Fields
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
732
740
.
33.
da Silva
,
M. C.
, and
Glynn
,
C.
, 1978, “
Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams: I. Equations of Motion
,”
J. Struct. Mech.
0360-1218,
6
, pp.
437
448
.
34.
da Silva
,
M. C.
, and
Glynn
,
C.
, 1978, “
Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams: II. Forced Motions
,”
J. Struct. Mech.
0360-1218,
6
, pp.
449
461
.
35.
Nayfeh
,
A. H.
, 2004,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
Hoboken, NJ
.
36.
Stepan
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Function
,
Wiley
,
New York
.
37.
Niculescu
,
S.
, 2001,
Delay Effects on Stability: A Robust Control Approach.
,
Springer-Verlag
,
London
.
38.
Kamen
,
E. W.
, 1978, “
Lectures on Algebraic Systems Theory: Linear Systems Over Rings
,”
NASA
Contractor Report No. 3016.
39.
Gu
,
K.
,
Khartinov
,
V.
, and
Chen
,
J.
, 2003,
Stability of Time-Delay Systems
,
Springer
,
New York
.
40.
Olgac
,
N.
, and
Sipahi
,
R.
, 2002, “
An Exact Method for the Stability Analysis of Time-Delayed Linear Time-Invariant (LTI) Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
793
797
.
41.
Sipahi
,
R.
, and
Olgac
,
N.
, 2006, “
Stability Robustness of Retarded LTI Systems With Single Delay and Exhaustive Determination of Their Imaginary Spectra
,”
SIAM J. Control Optim.
0363-0129,
45
, pp.
1680
1696
.
42.
Kalmár-Nagy
,
T.
,
Stepan
,
G.
, and
Moon
,
F.
, 2001, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
121
142
.
43.
Nayfeh
,
A. H.
, and
T.
,
M. D.
, 1979,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
44.
Nayfeh
,
A. H.
, 1995,
Nonlinear Dynamics
,
Wiley
,
Hoboken, NJ
.
45.
Nayfeh
,
A. H.
, 1973,
Perturbation Methods
,
Wiley Interscience
,
New York
.
46.
Nayfeh
,
A. H.
, 2008, “
Order Reduction of Retarded Nonlinear Systems – The Method of Multiple Scales Versus Center-Manifold Reduction
,”
Nonlinear Dyn.
0924-090X,
51
, pp.
483
500
.
47.
Meirovitch
,
L.
, 2001,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
, p.
10020
.
You do not currently have access to this content.