The present paper contributes to the field of flexible multibody systems dynamics. Two new solid finite elements employing the absolute nodal coordinate formulation are presented. In this formulation, the equations of motion contain a constant mass matrix and a vector of generalized gravity forces, but the vector of elastic forces is highly nonlinear. The proposed solid eight node brick element with 96 degrees of freedom uses translations of nodes and finite slopes as sets of nodal coordinates. The displacement field is interpolated using incomplete cubic polynomials providing the absence of shear locking effect. The use of finite slopes describes the deformed shape of the finite element more exactly and, therefore, minimizes the number of finite elements required for accurate simulations. Accuracy and convergence of the finite element is demonstrated in nonlinear test problems of statics and dynamics.

References

1.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
, 3rd ed.,
Cambridge University
,
New York
.
2.
Rankin
,
C. C.
, and
Brogan
,
F. A.
,
1984
, “
An Element-Independent Corotational Procedure for the Treatment of Large Rotations
,”
ASME J. Pressure Vessel Technol.
,
108
(2), pp.
165
174
.10.1115/1.3264765
3.
Kane
,
T. R.
,
Ryan
,
R. R.
, and
Banerjee
,
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control
,
10
, pp.
139
151
.10.2514/3.20195
4.
Belytschko
,
T.
, and
Hsieh
,
B. J.
,
1973
, “
Nonlinear Transient Finite Element Analysis With Convected Coordinates
,”
Int. J. Numer. Methods Eng.
,
7
, pp.
255
271
.10.1002/nme.1620070304
5.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem, Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
, pp.
55
70
.10.1016/0045-7825(85)90050-7
6.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite Strain Rod Model, Part II: Computational Aspects
,”
Comput. Meth. Appl. Mech. Eng.
,
58
, pp.
79
116
.10.1016/0045-7825(86)90079-4
7.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
, pp.
189
222
.10.1023/A:1009773505418
8.
Wu
,
G.
,
He
,
X.
, and
Pai
,
F.
,
2011
, “
Geometrically Exact 3D Beam Element for Arbitrary Large Rigid-Elastic Deformation Analysis of Aerospace Structures
,”
Finite Elem. Anal. Design
,
47
(
4
), pp.
402
412
.10.1016/j.finel.2010.11.008
9.
Pai
,
P. F.
,
2007
,
Highly Flexible Structures: Modeling, Computation, and Experimentation
,
AIAA
,
Reston, VA
.
10.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
11.
Escalona
,
J. L.
,
Hussien
,
H. A.
, and
Shabana
,
A. A.
,
1998
, “
Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics
,”
J. Sound Vib.
,
5
, pp.
833
851
.10.1006/jsvi.1998.1563
12.
von Dombrowski
,
S.
,
2002
, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
,
8
, pp.
409
432
.10.1023/A:1021158911536
13.
Dmitrochenko
,
O.
,
Yoo
,
W. S.
, and
Pogorelov
,
D.
,
2006
, “
Helicoseir as Shape of a Rotating Chain (II): 3D Theory and Simulation Using ANCF
,”
Multibody Syst. Dyn.
,
15
(
2
), pp.
181
200
.10.1007/s11044-005-9004-0
14.
Yoo
,
W.-S.
,
Dmitrochenko
,
O.
,
Park
,
S.-J.
, and
Lim
,
O.-K.
,
2005
, “
A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip
,”
Mech. Based Des. Struct. Mach.
,
33
(
3–4
), pp.
399
422
.10.1080/15367730500458267
15.
Nachbagauer
,
K.
,
Gruber
,
P.
,
Vetyukov
,
Yu.
, and
Gerstmayr
,
J.
,
2011
, “
A Spatial Thin Beam Finite Element Based on the Absolute Nodal Coordinate Formulation Without Singularities
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conference & Computers and Information in Engineering Conference
,
Washington, DC
, Aug. 28–31, IDETC/CIE 201.
16.
Dmitrochenko
,
O.
, and
Pogorelov
,
D.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
17
43
.10.1023/A:1024553708730
17.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2008
, “
Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041012
.10.1115/1.2960479
18.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2008
, “
Shear Correction of a Thin Plate Element in Absolute Nodal Coordinates
,”
Proceedings of 8th World Congress On Computational Mechanics (WCCMS) and 5th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2008)
,
Venice, Italy
, June 30–July 4.
19.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2009
, “
Shear Correction for Thin Plate Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Proceedings of the ASME 2009 IDETC/CIE
,
San Diego, CA
, Aug. 30–Sept. 2, pp. 1–9.
20.
Sereshk
,
M.
, and
Salimi
,
M.
,
2011
, “
Comparison of Finite Element Method Based on Nodal Displacement and Absolute Nodal Coordinate Formulation (ANCF) in Thin Shell Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
8
), pp.
1185
1198
.10.1002/cnm.1348
21.
Gerstmayr
,
J.
, and
Schöberl
,
J.
,
2006
, “
A 3D Finite Element Method for Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
15
, pp.
309
324
.10.1007/s11044-006-9009-3
22.
Kübler
,
L.
,
Eberhard
,
P.
, and
Geisler
,
J.
,
2003
, “
Flexible Multibody Systems With Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
34
, pp.
31
52
.10.1023/B:NODY.0000014551.75105.b4
23.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Coordinate Formulation
,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics March 1, 2011, Vol. 225, No. 1,
34
51
.
24.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Extended Digital Nomenclature Code for Description of Complex Finite Elements and Generation of New Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
2
), pp.
229
252
.10.1080/15397734.2011.550858
25.
Friedman
,
Z.
, and
Kosmatka
,
J. B.
,
1993
, “
An Improved Two-Node Timoshenko Beam Finite Element
,”
Comput. Struct.
,
47
(
3
), pp.
473
481
.10.1016/0045-7949(93)90243-7
26.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C. W.
,
2013
, “
Three- and Four-Noded Planar Elements Using Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
29
, pp.
255
269
.10.1007/s11044-012-9314-y
27.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
1991
,
The Finite Element Method: Fourth Edition. Vol 2: Solid and Fluid Mechanics
,
McGraw-Hill
,
New York.
28.
Felippa
C.
,
2004
, “
A Compendium of FEM Integration Formulas for Symbolic Work
,”
Eng. Comput.
,
21
(
8
), pp.
867
890
.10.1108/02644400410554362
29.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
,
1997
,
Mechanics of Materials
,
PWS Publishing
,
Boston, MA
.
30.
Pogorelov
,
D.
,
1997
, “
Some Developments in Computational Techniques in Modeling Advanced Mechanical Systems
,”
Proceedings of the IUTAM Symposium on Interaction Between Dynamics and Control in Advanced Mechanical Systems
, pp.
313
320
.
31.
Bazeley
,
G. P.
,
Cheung
,
Y. K.
,
Irons
,
B. M.
, and
Zienkiewicz
,
O. C.
,
1966
, “
Triangular Elements in Bending—Conforming and Non-Conforming Solutions
,”
Proceedings of the First Conference on Matrix Methods in Structural Mechanics, Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base
,
OH
, Paper No. AFFDL-TR-66-90, pp.
547
576
.
You do not currently have access to this content.